Do you want to publish a course? Click here

Molecular simulations minimally restrained by experimental data

63   0   0.0 ( 0 )
 Added by Huafeng Xu
 Publication date 2018
  fields Physics
and research's language is English
 Authors Huafeng Xu




Ask ChatGPT about the research

One popular approach to incorporating experimental data into molecular simulations is to restrain the ensemble average of observables to their experimental values. Here I derive equations for the equilibrium distributions generated by restrained ensemble simulations and the corresponding expected values of observables. My results suggest a method to restrain simulations so that they generate distributions that are minimally perturbed from the unbiased distributions while reproducing the experimental values of the observables within their measurement uncertainties.



rate research

Read More

In this work, a new algorithm is proposed to compute single particle (infinite dilution) thermodiffusion using Non-Equilibrium Molecular Dynamics simulations through the estimation of the thermophoretic force that applies on a solute particle. This scheme is shown to provide consistent results for simple Lennard-Jones fluids and for model nanofluids (spherical non-metallic nanoparticles + Lennard-Jones fluid) where it appears that thermodiffusion amplitude, as well as thermal conductivity, decrease with nanoparticles concentration. Then, in nanofluids in the liquid state, by changing the nature of the nanoparticle (size, mass and internal stiffness) and of the solvent (quality and viscosity) various trends are exhibited. In all cases the single particle thermodiffusion is positive, i.e. the nanoparticle tends to migrate toward the cold area. The single particle thermal diffusion 2 coefficient is shown to be independent of the size of the nanoparticle (diameter of 0.8 to 4 nm), whereas it increases with the quality of the solvent and is inversely proportional to the viscosity of the fluid. In addition, this coefficient is shown to be independent of the mass of the nanoparticle and to increase with the stiffness of the nanoparticle internal bonds. Besides, for these configurations, the mass diffusion coefficient behavior appears to be consistent with a Stokes-Einstein like law.
We present a molecular dynamics simulation method for the computation of the solubility of organic crystals in solution. The solubility is calculated based on the equilibrium free energy difference between the solvated solute and its crystallized state at the crystal surface kink site. In order to efficiently sample the growth and dissolution process, we have carried out well-tempered Metadynamics simulations with a collective variable that captures the slow degrees of freedom, namely the solute diffusion to and adsorption at the kink site together with the desolvation of the kink site. Simulations were performed at different solution concentrations using constant chemical potential molecular dynamics and the solubility was identified at the concentration at which the free energy values between the grown and dissolved kink states were equal. The effectiveness of this method is demonstrated by its success in reproducing the experimental trends of solubility of urea and naphthalene in a variety of solvents.
A new simulated tempering method, which is referred to as simulated tempering umbrella sampling, for calculating the free energy of chemical reactions is proposed. First principles molecular dynamics simulations with this simulated tempering were performed in order to study the intramolecular proton transfer reaction of malonaldehyde in aqueous solution. Conformational sampling in reaction coordinate space can be easily enhanced with this method, and the free energy along a reaction coordinate can be calculated accurately. Moreover, the simulated tempering umbrella sampling provides trajectory data more efficiently than the conventional umbrella sampling method.
108 - G.Wilk , Z.Wlodarczyk 2007
We demonstrate that selection of the minimal value of ordered variables leads in a natural way to its distribution being given by the Tsallis distribution, the same as that resulting from Tsallis nonextensive statistics. The possible application of this result to the multiparticle production processes is indicated.
In the replica-exchange molecular dynamics method, where constant-temperature molecular dynamics simulations are performed in each replica, one usually rescales the momentum of each particle after replica exchange. This rescaling method had previously been worked out only for the Gaussian constraint method. In this letter, we present momentum rescaling formulae for four other commonly used constant-temperature algorithms, namely, Langevin dynamics, Andersen algorithm, Nos{e}-Hoover thermostat, and Nos{e}-Poincar{e} thermostat. The effectiveness of these rescaling methods is tested with a small biomolecular system, and it is shown that proper momentum rescaling is necessary to obtain correct results in the canonical ensemble.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا