No Arabic abstract
Energy demands of modern society require efficient means of energy conversion and storage. Nanocarbons have been identified as versatile materials which combine many desirable properties, allowing them to be used in electrochemical power sources, from electrochemical capacitors to fuel cells. Efficient production of nanocarbons requires innovative and scalable approaches which allow for tuning of their physical and chemical properties. Carbonization of polymeric nanostructures has been demonstrated as a promising approach for production of high-performance nanocarbons with desired morphology and variable surface chemical properties. These materials have been successfully used as active electrode materials in electrochemical capacitors, as electrocatalysts or catalyst supports. Moreover, these materials are often found as parts of composite electrode materials where they play very important role in boosting materials performance. In this contribution we shall review developments in the field of application of polymer-derived nanocarbons for electrochemical energy conversion and storage applications, covering the last decade. Primary focus will be on polyaniline and polypyrrole but carbons derived from other polymers will also be mentioned. We shall emphasize the link between the physical and chemical properties of nanocarbons and their performance in electrochemical power sources with an attempt to derive general guidelines for further development of new materials with improved performances.
The search for suitable materials for solid-state stationary storage of green hydrogen is pushing the implementation of efficient renewable energy systems. This involves rational design and modification of cheap alloys for effective storage in mild conditions of temperature and pressure. Among many intermetallic compounds described in the literature, TiFe-based systems have recently regained vivid interest as materials for practical applications since they are low-cost and they can be tuned to match required pressure and operation conditions. This work aims to provide a comprehensive review of publications involving chemical substitution in TiFe-based compounds for guiding compound design and materials selection in current and future hydrogen storage applications. Mono- and multi-substituted compounds modify TiFe thermodynamics and are beneficial for many hydrogenation properties. They will be reviewed and deeply discussed, with a focus on manganese substitution.
We report the development of redox-active conjugated polymers with potential application to electrochemical energy storage. Side chain engineering enables processing of the polymer electrodes from solution, stability in aqueous electrolytes and efficient transport of ionic and electronic charge carriers. We synthesized a 3,3 dialkoxybithiophene homo polymer (p type polymer) with glycol side chains and prepared naphthalene 1,4,5,8-tetracarboxylic-diimide-dialkoxybithiophene (NDI gT2) copolymers (n type polymer) with either a glycol or zwitterionic side chain on the NDI unit. For the latter, we developed a post-functionalization synthesis to attach the polar zwitterion side chains to the polymer backbone to avoid challenges of purifying polar intermediates. We demonstrate fast and reversible charging of solution processed electrodes for both the p- and n type polymers in aqueous electrolytes, without using additives or porous scaffolds and for films up to micrometers thick. We apply spectroelectrochemistry as an in operando technique to probe the state of charge of the electrodes. This reveals that thin films of the p-type polymer and zwitterion n-type polymer can be charged reversibly with up to two electronic charges per repeat unit (bipolaron formation). We combine thin films of these polymers in a two-electrode cell and demonstrate output voltages of up to 1.4 V with high redox stability. Our findings demonstrate the potential of functionalizing conjugated polymers with appropriate polar side chains to improve specific capacity, reversibility and rate capabilities of polymer electrodes in aqueous electrolytes.
Electrochemical ion insertion involves coupled ion-electron transfer reactions, transport of guest species, and redox of the host. The hosts are typically anisotropic solids with two-dimensional conduction planes, but can also be materials with one-dimensional or isotropic transport pathways. These insertion compounds have traditionally been studied in the context of energy storage, but also find extensive applications in electrocatalysis, optoelectronics, and computing. Recent developments in operando, ultrafast, and high-resolution characterization methods, as well as accurate theoretical simulation methods, have led to a renaissance in the understanding of ion-insertion compounds. In this Review, we present a unified framework for understanding insertion compounds across time and length scales ranging from atomic to device levels. Using graphite, transition metal dichalcogenides, layered oxides, oxyhydroxides, and olivines as examples, we explore commonalities in these materials in terms of point defects, interfacial reactions, and phase transformations. We illustrate similarities in the operating principles of various ion-insertion devices ranging from batteries and electrocatalysts to electrochromics and thermal transistors, with the goal of unifying research across disciplinary boundaries.
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The Magnesium group of international experts contributing to IEA Task 32 Hydrogen Based Energy Storage recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2,nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented.
The current energy transition imposes a rapid implementation of energy storage systems with high energy density and eminent regeneration and cycling efficiency. Metal hydrides are potential candidates for generalized energy storage, when coupled with fuel cell units and/or batteries. An overview of ongoing research is reported and discussed in this review work on the light of application as hydrogen and heat storage matrices, as well as thin films for hydrogen optical sensors. These include a selection of single-metal hydrides, Ti-V(Fe) based intermetallics, multi-principal element alloys (high-entropy alloys), and a series of novel synthetically accessible metal borohydrides. Metal hydride materials can be as well of important usefulness for MH-based electrodes with high capacity (e.g. MgH2 ~ 2000 mAh g-1) and solid-state electrolytes displaying high ionic conductivity suitable, respectively, for Li-ion and Li/Mg battery technologies. To boost further research and development directions some characterization techniques dedicated to the study of M-H interactions, their equilibrium reactions, and additional quantification of hydrogen concentration in thin film and bulk hydrides are presented at the end of this manuscript.