Do you want to publish a course? Click here

Dual Principal Component Pursuit: Probability Analysis and Efficient Algorithms

72   0   0.0 ( 0 )
 Added by Zhihui Zhu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recent methods for learning a linear subspace from data corrupted by outliers are based on convex $ell_1$ and nuclear norm optimization and require the dimension of the subspace and the number of outliers to be sufficiently small. In sharp contrast, the recently proposed Dual Principal Component Pursuit (DPCP) method can provably handle subspaces of high dimension by solving a non-convex $ell_1$ optimization problem on the sphere. However, its geometric analysis is based on quantities that are difficult to interpret and are not amenable to statistical analysis. In this paper we provide a refined geometric analysis and a new statistical analysis that show that DPCP can tolerate as many outliers as the square of the number of inliers, thus improving upon other provably correct robust PCA methods. We also propose a scalable Projected Sub-Gradient Method method (DPCP-PSGM) for solving the DPCP problem and show it admits linear convergence even though the underlying optimization problem is non-convex and non-smooth. Experiments on road plane detection from 3D point cloud data demonstrate that DPCP-PSGM can be more efficient than the traditional RANSAC algorithm, which is one of the most popular methods for such computer vision applications.

rate research

Read More

In this paper, we study the problem of recovering a low-rank matrix (the principal components) from a high-dimensional data matrix despite both small entry-wise noise and gross sparse errors. Recently, it has been shown that a convex program, named Principal Component Pursuit (PCP), can recover the low-rank matrix when the data matrix is corrupted by gross sparse errors. We further prove that the solution to a related convex program (a relaxed PCP) gives an estimate of the low-rank matrix that is simultaneously stable to small entrywise noise and robust to gross sparse errors. More precisely, our result shows that the proposed convex program recovers the low-rank matrix even though a positive fraction of its entries are arbitrarily corrupted, with an error bound proportional to the noise level. We present simulation results to support our result and demonstrate that the new convex program accurately recovers the principal components (the low-rank matrix) under quite broad conditions. To our knowledge, this is the first result that shows the classical Principal Component Analysis (PCA), optimal for small i.i.d. noise, can be made robust to gross sparse errors; or the first that shows the newly proposed PCP can be made stable to small entry-wise perturbations.
The `Internet of Things has brought increased demand for AI-based edge computing in applications ranging from healthcare monitoring systems to autonomous vehicles. Quantization is a powerful tool to address the growing computational cost of such applications, and yields significant compression over full-precision networks. However, quantization can result in substantial loss of performance for complex image classification tasks. To address this, we propose a Principal Component Analysis (PCA) driven methodology to identify the important layers of a binary network, and design mixed-precision networks. The proposed Hybrid-Net achieves a more than 10% improvement in classification accuracy over binary networks such as XNOR-Net for ResNet and VGG architectures on CIFAR-100 and ImageNet datasets while still achieving up to 94% of the energy-efficiency of XNOR-Nets. This work furthers the feasibility of using highly compressed neural networks for energy-efficient neural computing in edge devices.
132 - Kai Liu , Qiuwei Li , Hua Wang 2019
Principal Component Analysis (PCA) is one of the most important methods to handle high dimensional data. However, most of the studies on PCA aim to minimize the loss after projection, which usually measures the Euclidean distance, though in some fields, angle distance is known to be more important and critical for analysis. In this paper, we propose a method by adding constraints on factors to unify the Euclidean distance and angle distance. However, due to the nonconvexity of the objective and constraints, the optimized solution is not easy to obtain. We propose an alternating linearized minimization method to solve it with provable convergence rate and guarantee. Experiments on synthetic data and real-world datasets have validated the effectiveness of our method and demonstrated its advantages over state-of-art clustering methods.
We consider the problem of principal component analysis from a data matrix where the entries of each column have undergone some unknown permutation, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that for generic enough data, and up to a permutation of the coordinates of the ambient space, there is a unique subspace of minimal dimension that explains the data. We show that a permutation-invariant system of polynomial equations has finitely many solutions, with each solution corresponding to a row permutation of the ground-truth data matrix. Allowing for missing entries on top of permutations leads to the problem of unlabeled matrix completion, for which we give theoretical results of similar flavor. We also propose a two-stage algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction of the data has been permuted. Stage-I of this pipeline employs robust-PCA methods to estimate the ground-truth column-space. Equipped with the column-space, stage-II applies methods for linear regression without correspondences to restore the permuted data. A computational study reveals encouraging findings, including the ability of UPCA to handle face images from the Extended Yale-B database with arbitrarily permuted patches of arbitrary size in $0.3$ seconds on a standard desktop computer.
We study the problem of tensor robust principal component analysis (TRPCA), which aims to separate an underlying low-multilinear-rank tensor and a sparse outlier tensor from their sum. In this work, we propose a fast non-convex algorithm, coined Robust Tensor CUR (RTCUR), for large-scale TRPCA problems. RTCUR considers a framework of alternating projections and utilizes the recently developed tensor Fiber CUR decomposition to dramatically lower the computational complexity. The performance advantage of RTCUR is empirically verified against the state-of-the-arts on the synthetic datasets and is further demonstrated on the real-world application such as color video background subtraction.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا