Do you want to publish a course? Click here

Triangular Schlesinger systems and superelliptic curves

66   0   0.0 ( 0 )
 Added by Vladimir Dragovic
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the Schlesinger system of partial differential equations in the case when the unknown matrices of arbitrary size $(ptimes p)$ are triangular and the eigenvalues of each matrix form an arithmetic progression with a rational difference $q$, the same for all matrices. We show that such a system possesses a family of solutions expressed via periods of meromorphic differentials on the Riemann surfaces of superelliptic curves. We determine the values of the difference $q$, for which our solutions lead to explicit polynomial or rational solutions of the Schlesinger system. As an application of the $(2times2)$-case, we obtain explicit sequences of rational solutions and one-parameter families of rational solutions of Painleve VI equations. Using similar methods, we provide algebraic solutions of particular Garnier systems.



rate research

Read More

We prove that the topological recursion formalism can be used to compute the WKB expansion of solutions of second order differential operators obtained by quantization of any hyper-elliptic curve. We express this quantum curve in terms of spectral Darboux coordinates on the moduli space of meromorphic $mathfrak{sl}_2$-connections on $mathbb{P}^1$ and argue that the topological recursion produces a $2g$-parameter family of associated tau functions, where $2g$ is the dimension of the moduli space considered. We apply this procedure to the 6 Painleve equations which correspond to $g=1$ and consider a $g=2$ example.
55 - D.Korotkin , V.Matveev 1999
We review recent developments in the method of algebro-geometric integration of integrable systems related to deformations of algebraic curves. In particular, we discuss the theta-functional solutions of Schlesinger system, Ernst equation and self-dual SU(2)-invariant Einstein equations.
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (generalized Casimir operators) are found for three classes of Lie algebras, namely those which are either strictly or non-strictly triangular, and for so-called special upper triangular Lie algebras. Algebraic algorithm of [J. Phys. A: Math. Gen., 2006, V.39, 5749; math-ph/0602046], developed further in [J. Phys. A: Math. Theor., 2007, V.40, 113; math-ph/0606045], is used to determine the invariants. A conjecture of [J. Phys. A: Math. Gen., 2001, V.34, 9085], concerning the number of independent invariants and their form, is corroborated.
In this paper, we classify space-time curves up to Galilean group of transformations with Cartans method of equivalence. As an aim, we elicit invariats from action of special Galilean group on space-time curves, that are, in fact, conservation laws in physics. We also state a necessary and sufficient condition for equivalent Galilean motions.
The invariants of solvable Lie algebras with nilradicals isomorphic to the algebra of strongly upper triangular matrices and diagonal nilindependent elements are studied exhaustively. Bases of the invariant sets of all such algebras are constructed by an original purely algebraic algorithm based on Cartans method of moving frames.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا