Do you want to publish a course? Click here

Quantization of hyper-elliptic curves from isomonodromic systems and topological recursion

81   0   0.0 ( 0 )
 Added by Nicolas Orantin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove that the topological recursion formalism can be used to compute the WKB expansion of solutions of second order differential operators obtained by quantization of any hyper-elliptic curve. We express this quantum curve in terms of spectral Darboux coordinates on the moduli space of meromorphic $mathfrak{sl}_2$-connections on $mathbb{P}^1$ and argue that the topological recursion produces a $2g$-parameter family of associated tau functions, where $2g$ is the dimension of the moduli space considered. We apply this procedure to the 6 Painleve equations which correspond to $g=1$ and consider a $g=2$ example.



rate research

Read More

We prove that the topological recursion formalism can be used to quantize any generic classical spectral curve with smooth ramification points and simply ramified away from poles. For this purpose, we build both the associated quantum curve, i.e. the differential operator quantizing the algebraic equation defining the classical spectral curve considered, and a basis of wave functions, that is to say a basis of solutions of the corresponding differential equation. We further build a Lax pair representing the resulting quantum curve and thus present it as a point in an associated space of meromorphic connections on the Riemann sphere, a first step towards isomonodromic deformations. We finally propose two examples: the derivation of a 2-parameter family of formal trans-series solutions to Painleve 2 equation and the quantization of a degree three spectral curve with pole only at infinity.
Starting from loop equations, we prove that the wave functions constructed from topological recursion on families of degree $2$ spectral curves with a global involution satisfy a system of partial differential equations, whose equations can be seen as quantizations of the original spectral curves. The families of spectral curves can be parametrized with the so-called times, defined as periods on second type cycles, and with the poles. These equations can be used to prove that the WKB solution of many isomonodromic systems coincides with the topological recursion wave function, which proves that the topological recursion wave function is annihilated by a quantum curve. This recovers many known quantum curves for genus zero spectral curves and generalizes this construction to hyperelliptic curves.
We show that almost all the linear differential operators factors obtained in the analysis of the n-particle contribution of the susceptibility of the Ising model for $, n le 6$, are operators associated with elliptic curves. Beyond the simplest factors which are homomorphic to symmetric powers of the second order operator associated with the complete elliptic integral E, the second and third order differential operators can actually be interpreted as modular forms of the elliptic curve of the Ising model. A last order-four globally nilpotent operator is not reducible to this elliptic curve, modular forms scheme. It is shown to actually correspond to a natural generalization of this elliptic curve, modular forms scheme, with the emergence of a Calabi-Yau equation, corresponding to a selected $_4F_3$ hypergeometric function which can also be seen as a Hadamard product of the complete elliptic integral K, with a remarkably simple algebraic pull-back, the corresponding Calabi-Yau fourth-order differential operator having a symplectic differential Galois group SP(4,C). The associated mirror maps and higher order Schwarzian ODEs has an exact (isogenies) representation of the generators of the renormalization group, extending the modular group SL(2,Z) to a GL(2, Z) symmetry group.
161 - B Eynard 2019
Topological recursion associates to a spectral curve, a sequence of meromorphic differential forms. A tangent space to the moduli space of spectral curves (its space of deformations) is locally described by meromorphic 1-forms, and we use form-cycle duality to re-express it in terms of cycles (generalized cycles). This formulation allows to express the ABCD tensors of Quantum Airy Structures acting on the vector space of cycles, in an intrinsic spectral-curve geometric way.
85 - Olivier Marchal 2016
In this article, we study the large $n$ asymptotic expansions of $ntimes n$ Toeplitz determinants whose symbols are indicator functions of unions of arc-intervals of the unit circle. In particular, we use an Hermitian matrix model reformulation of the problem to provide a rigorous derivation of the general form of the large $n$ expansion when the symbol is an indicator function of either a single arc-interval or several arc-intervals with a discrete rotational symmetry. Moreover, we prove that the coefficients in the expansions can be reconstructed, up to some constants, from the Eynard-Orantin topological recursion applied to some explicit spectral curves. In addition, when the symbol is an indicator function of a single arc-interval, we provide the corresponding normalizing constants using a Selberg integral and illustrate the theoretical results with numeric simulations up to order $oleft(frac{1}{n^4}right)$. We also briefly discuss the situation when the number of arc-intervals increases with $n$, as well as more general Toeplitz determinants to which we may apply the present strategy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا