Do you want to publish a course? Click here

A realistic spectral function model for charged-current quasielastic-like neutrino and antineutrino cross sections on $^{12}$C

62   0   0.0 ( 0 )
 Added by Martin Ivanov
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

A detailed study of charged current quasielastic neutrino and antineutrino scattering cross sections on a $^{12}$C target with no pions in the final state is presented. The initial nucleus is described by means of a realistic spectral function $S(p,{cal E})$ in which nucleon-nucleon correlations are implemented by using natural orbitals through the Jastrow method. The roles played by these correlations and by final-state interactions are analyzed and discussed. The model also includes the contribution of weak two-body currents in the two-particle two-hole sector, evaluated within a fully relativistic Fermi gas. The theoretical predictions are compared with a large set of experimental data for double-differential, single-differential and total integrated cross sections measured by the MiniBooNE, MINER$ u$A and T2K experiments. Good agreement with experimental data is found over the whole range of neutrino energies. The results are also in global good agreement with the predictions of the superscaling approach, which is based on the analysis of electron-nucleus scattering data, with only a few differences seen at specific kinematics.



rate research

Read More

The analysis of charged-current quasielastic neutrino and antineutrino-nucleus scattering cross sections requires relativistic theoretical descriptions also accounting for the role of final-state interactions. We compare the results of the relativistic Greens function model with the data recently published by the MINER$ u$A Collaboration. The model is able to describe both MINER$ u$A and MiniBooNE data.
We estimate the theoretical uncertainties of the model developed in Phys. Rev. C70 055503 for inclusive quasielastic charged-current neutrino-nucleus reactions at intermediate energies. Besides we quantify the deviations of the predictions of this many body framework from those obtained within a simple Fermi gas model. An special attention has been paid to the ratio sigma(mu)/sigma(e) of interest for experiments on atmospheric neutrinos. We show that uncertainties affecting this ratio are likely smaller than 5%
82 - Artur M. Ankowski 2017
Martini et al. [Phys. Rev. C 94, 015501 (2016)] recently observed that when the produced-leptons mass plays an important role, the charged-current quasielastic cross section for muon neutrinos can be higher than that for electron neutrinos. Here I argue that this effect appears solely in the theoretical descriptions of nuclear effects in which nucleon knockout requires the energy and momentum transfers to lie in a narrow range of the kinematically allowed values.
124 - Artur M. Ankowski 2015
One of the largest sources of systematic uncertainties in ongoing neutrino-oscillation measurements is the description of nuclear effects. Its considerable reduction is expected thanks to the dedicated studies of (anti)neutrino-nucleus interactions in the MINERvA experiment. In this article, the calculations within the spectral function approach are compared to the charged-current quasielastic cross sections reported from MINERvA. The obtained results show that the effect of final-state interactions on the (anti)muon kinematics plays pivotal role in reproducing the experimental data.
High intensity monoenergetic muon neutrinos of energy 236 MeV from kaon decay at rest (KDAR) at the medium energy proton accelerator facilities like J-PARC and Fermilab are proposed to be used for making precision measurements of neutrino-nucleus cross sections in $^{12}C$ and $^{40}Ar$ and perform neutrino oscillation experiments in $ u_mu to u_mu$ and $ u_mu to u_e$ modes. In view of these developments, we study the theoretical uncertainties arising due to the nuclear medium effects in the neutrino-nucleus cross sections as well as in the angular and energy distributions of the charged leptons produced in the charged current (CC) induced reactions by $ u_mu$ and $ u_e$ in $^{12}C$ and $^{40}Ar$ in the energy region of $E_{ u_e( u_mu)}<$ 300 MeV. The calculations have been done in a microscopic model using the local density approximation which takes into account the nuclear effects due to the Fermi motion, binding energy and long range correlations. The results are compared with the other calculations available in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا