Do you want to publish a course? Click here

Adaptive algorithm for electronic structure calculations using reduction of Gaussian mixtures

68   0   0.0 ( 0 )
 Added by Gregory Beylkin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a new adaptive method for electronic structure calculations based on novel fast algorithms for reduction of multivariate mixtures. In our calculations, spatial orbitals are maintained as Gaussian mixtures whose terms are selected in the process of solving equations. Using a fixed basis leads to the so-called basis error since orbitals may not lie entirely within the linear span of the basis. To avoid such an error, multiresolution bases are used in adaptive algorithms so that basis functions are selected from a fixed collection of functions, large enough as to approximate solutions within any user-selected accuracy. Our new method achieves adaptivity without using a multiresolution basis. Instead, as a part of an iteration to solve nonlinear equations, our algorithm selects the best subset of linearly independent terms of a Gaussian mixture from a collection that is much larger than any possible basis since the locations and shapes of the Gaussian terms are not fixed in advance. Approximating an orbital within a given accuracy, our algorithm yields significantly fewer terms than methods using multiresolution bases. We demonstrate our approach by solving the Hartree-Fock equations for two diatomic molecules, HeH+ and LiH, matching the accuracy previously obtained using multiwavelet bases.



rate research

Read More

124 - Xiaoxu Li , Huajie Chen 2019
In this paper, we construct an efficient numerical scheme for full-potential electronic structure calculations of periodic systems. In this scheme, the computational domain is decomposed into a set of atomic spheres and an interstitial region, and different basis functions are used in different regions: radial basis functions times spherical harmonics in the atomic spheres and plane waves in the interstitial region. These parts are then patched together by discontinuous Galerkin (DG) method. Our scheme has the same philosophy as the widely used (L)APW methods in materials science, but possesses systematically spectral convergence rate. We provide a rigorous a priori error analysis of the DG approximations for the linear eigenvalue problems, and present some numerical simulations in electronic structure calculations.
We propose an adaptive planewave method for eigenvalue problems in electronic structure calculations. The method combines a priori convergence rates and accurate a posteriori error estimates into an effective way of updating the energy cut-off for planewave discretizations, for both linear and nonlinear eigenvalue problems. The method is error controllable for linear eigenvalue problems in the sense that for a given required accuracy, an energy cut-off for which the solution matches the target accuracy can be reached efficiently. Further, the method is particularly promising for nonlinear eigenvalue problems in electronic structure calculations as it shall reduce the cost of early iterations in self-consistent algorithms. We present some numerical experiments for both linear and nonlinear eigenvalue problems. In particular, we provide electronic structure calculations for some insulator and metallic systems simulated with Kohn--Sham density functional theory (DFT) and the projector augmented wave (PAW) method, illustrating the efficiency and potential of the algorithm.
We present a real-space adaptive-coordinate method, which combines the advantages of the finite-difference approach with the accuracy and flexibility of the adaptive coordinate method. The discretized Kohn-Sham equations are written in generalized curvilinear coordinates and solved self-consistently by means of an iterative approach. The Poisson equation is solved in real space using the Multigrid algorithm. We implemented the method on a massively parallel computer, and applied it to the calculation of the equilibrium geometry and harmonic vibrational frequencies of the CO_2, CO, N_2 and F_2 molecules, yielding excellent agreement with the results of accurate quantum chemistry and Local Density Functional calculations.
In this paper, we propose a coupled Discrete Empirical Interpolation Method (DEIM) and Generalized Multiscale Finite element method (GMsFEM) to solve nonlinear parabolic equations with application to the Allen-Cahn equation. The Allen-Cahn equation is a model for nonlinear reaction-diffusion process. It is often used to model interface motion in time, e.g. phase separation in alloys. The GMsFEM allows solving multiscale problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. In arXiv:1301.2866, it was shown that the GMsFEM provides a flexible tool to solve multiscale problems by constructing appropriate snapshot, offline and online spaces. In this paper, we solve a time dependent problem, where online enrichment is used. The main contribution is comparing different online enrichment methods. More specifically, we compare uniform online enrichment and adaptive methods. We also compare two kinds of adaptive methods. Furthermore, we use DEIM, a dimension reduction method to reduce the complexity when we evaluate the nonlinear terms. Our results show that DEIM can approximate the nonlinear term without significantly increasing the error. Finally, we apply our proposed method to the Allen Cahn equation.
We consider fast deterministic algorithms to identify the best linearly independent terms in multivariate mixtures and use them to compute, up to a user-selected accuracy, an equivalent representation with fewer terms. One algorithm employs a pivoted Cholesky decomposition of the Gram matrix constructed from the terms of the mixture to select what we call skeleton terms and the other uses orthogonalization for the same purpose. Importantly, the multivariate mixtures do not have to be a separated representation of a function. Both algorithms require $O(r^2 N + p(d) r N) $ operations, where $N$ is the initial number of terms in the multivariate mixture, $r$ is the number of selected linearly independent terms, and $p(d)$ is the cost of computing the inner product between two terms of a mixture in $d$ variables. For general Gaussian mixtures $p(d) sim d^3$ since we need to diagonalize a $dtimes d$ matrix, whereas for separated representations $p(d) sim d$. Due to conditioning issues, the resulting accuracy is limited to about one half of the available significant digits for both algorithms. We also describe an alternative algorithm that is capable of achieving higher accuracy but is only applicable in low dimensions or to multivariate mixtures in separated form. We describe a number of initial applications of these algorithms to solve partial differential and integral equations and to address several problems in data science. For data science applications in high dimensions,we consider the kernel density estimation (KDE) approach for constructing a probability density function (PDF) of a cloud of points, a far-field kernel summation method and the construction of equivalent sources for non-oscillatory kernels (used in both, computational physics and data science) and, finally, show how to use the new algorithm to produce seeds for subdividing a cloud of points into groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا