No Arabic abstract
On August 22, 2014, the satellites GSAT-0201 and GSAT-0202 of the European GNSS Galileo were unintentionally launched into eccentric orbits. Unexpectedly, this has become a fortunate scientific opportunity since the onboard hydrogen masers allow for a sensitive test of the redshift predicted by the theory of general relativity. In the present Letter we describe an analysis of approximately three years of data from these satellites including three different clocks. For one of these we determine the test parameter quantifying a potential violation of the combined effects of the gravitational redshift and the relativistic Doppler shift. The uncertainty of our result is reduced by more than a factor 4 as compared to the values of Gravity Probe A obtained in 1976.
We report on a new test of the gravitational redshift and thus of local position invariance, an integral part of the Einstein equivalence principle, which is the foundation of general relativity and all metric theories of gravitation. We use data spanning 1008 days from two satellites of Galileo, Europes global satellite navigation system (GNSS), which were launched in 2014, but accidentally delivered on elliptic rather than circular orbits. The resulting modulation of the gravitational redshift of the onboard atomic clocks allows the redshift determination with high accuracy. Additionally specific laser ranging campaigns to the two satellites have enabled a good estimation of systematic effects related to orbit uncertainties. Together with a careful conservative modelling and control of other systematic effects we measure the fractional deviation of the gravitational redshift from the prediction by general relativity to be $(+0.19 pm 2.48)times10^{-5}$ at 1 sigma, improving the best previous test by a factor~5.6. To our knowledge, this represents the first reported improvement on one of the longest standing results in experimental gravitation, the Gravity Probe A hydrogen maser rocket experiment back in 1976.
We show that Wolf et al.s 2011 analysis in Class. Quant. Grav. v28, 145017 does not support their conclusions, in particular that there is no redshift effect in atom interferometers except in inconsistent dual Lagrangian formalisms. Wolf et al. misapply both Schiffs conjecture and the results of their own analysis when they conclude that atom interferometers are tests of the weak equivalence principle which only become redshift tests if Schiffs conjecture is invalid. Atom interferometers are direct redshift tests in any formalism.
We present an approach to testing the gravitational redshift effect using the RadioAstron satellite. The experiment is based on a modification of the Gravity Probe A scheme of nonrelativistic Doppler compensation and benefits from the highly eccentric orbit and ultra-stable atomic hydrogen maser frequency standard of the RadioAstron satellite. Using the presented techniques we expect to reach an accuracy of the gravitational redshift test of order $10^{-5}$, a magnitude better than that of Gravity Probe A. Data processing is ongoing, our preliminary results agree with the validity of the Einstein Equivalence Principle.
The radiation of linear momentum imparts a recoil (or kick) to the center of mass of a merging black hole binary system. Recent numerical relativity calculations have shown that eccentricity can lead to an approximate 25% increase in recoil velocities for equal-mass, spinning binaries with spins lying in the orbital plane (superkick configurations) [U Sperhake et al. Phys. Rev. D 101 (2020) 024044 (arXiv:1910.01598)]. Here we investigate the impact of nonzero eccentricity on the kick magnitude and gravitational-wave emission of nonspinning, unequal-mass black hole binaries. We confirm that nonzero eccentricities at merger can lead to kicks which are larger by up to ~25% relative to the quasicircular case. We also find that the kick velocity $v$ has an oscillatory dependence on eccentricity, that we interpret as a consequence of changes in the angle between the infall direction at merger and the apoapsis (or periapsis) direction.
Numerical simulations are performed of a test scalar field in a spacetime undergoing gravitational collapse. The behavior of the scalar field near the singularity is examined and implications for generic singularities are discussed. In particular, our example is the first confirmation of the BKL conjecture for an asymptotically flat spacetime.