No Arabic abstract
We consider the impact of a weakly coupled environment comprising a light scalar field on the open dynamics of a quantum probe field, resulting in a master equation for the probe field that features corrections to the coherent dynamics, as well as decoherence and momentum diffusion. The light scalar is assumed to couple to matter either through a nonminimal coupling to gravity or, equivalently, through a Higgs portal. Motivated by applications to experiments such as atom interferometry, we assume that the probe field can be initialized, by means of external driving, in a state that is not an eigenstate of the light scalar-field--probe system, and we derive the master equation for single-particle matrix elements of the reduced density operator of a toy model. We comment on the possibilities for experimental detection and the related challenges, and highlight possible pathways for further improvements. This derivation of the master equation requires techniques of non-equilibrium quantum field theory, including the Feynman-Vernon influence functional and thermo field dynamics, used to motivate a method of Lehmann-Symanzik-Zimmermann-like reduction. In order to obtain cutoff-independent results for the probe-field dynamics, we find that it is necessary to use a time-dependent renormalization procedure. Specifically, we show that non-Markovian effects following a quench, namely the violation of time-translational invariance due to finite-time effects, lead to a time-dependent modulation of the usual vacuum counterterms.
Inertial observers in de Sitter are surrounded by a horizon and see thermal fluctuations. To them, a massless scalar field appears to follow a random motion but any attractive potential, no matter how weak, will eventually stabilize the field. We study this thermalization process in the static patch (the spacetime region accessible to an individual observer) via a truncation to the low frequency spectrum. We focus on the distribution of the field averaged over a subhorizon region. At timescales much longer than the inverse temperature and to leading order in the coupling, we find the evolution to be Markovian, governed by the same Fokker-Planck equation that arises when the theory is studied in the inflationary setup.
While no-hair theorems forbid isolated black holes from possessing permanent moments beyond their mass, electric charge, and angular momentum, research over the past two decades has demonstrated that a black hole interacting with a time-dependent background scalar field will gain an induced scalar charge. In this paper, we study this phenomenon from an effective field theory (EFT) perspective. We employ a novel approach to constructing the effective point-particle action for the black hole by integrating out a set of composite operators localized on its worldline. This procedure, carried out using the in-in formalism, enables a systematic accounting of both conservative and dissipative effects associated with the black holes horizon at the level of the action. We show that the induced scalar charge is inextricably linked to accretion of the background environment, as both effects stem from the same parent term in the effective action. The charge, in turn, implies that a black hole can radiate scalar waves and will also experience a fifth force. Our EFT correctly reproduces known results in the literature for massless scalars, but now also generalizes to massive real scalar fields, allowing us to consider a wider range of scenarios of astrophysical interest. As an example, we use our EFT to study the early inspiral of a black hole binary embedded in a fuzzy dark matter halo.
Caustic singularity formations in shift-symmetric $k$-essence and Horndeski theories on a fixed Minkowski spacetime were recently argued. In $n$ dimensions, this singularity is the $(n-2)$-dimensional plane in spacetime at which second derivatives of a field diverge and the field loses single-valued description for its evolution. This does not necessarily imply a pathological behavior of the system but rather invalidates the effective description. The effective theory would thus have to be replaced by another to describe the evolution thereafter. In this paper, adopting the planar-symmetric $1$+$1$-dimensional approach employed in the original analysis, we seek all $k$-essence theories in which generic simple wave solutions are free from such caustic singularities. Contrary to the previous claim, we find that not only the standard canonical scalar but also the DBI scalar are free from caustics, as far as planar-symmetric simple wave solutions are concerned. Addition of shift-symmetric Horndeski terms does not change the conclusion.
We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing cosmological constant or dynamical dark energy.
We study the equivalence principle and its violations by quantum effects in scalar-tensor theories that admit a conformal frame in which matter only couples to the spacetime metric. These theories possess Ward identities that guarantee the validity of the weak equivalence principle to all orders in the matter coupling constants. These Ward identities originate from a broken Weyl symmetry under which the scalar field transforms by a shift, and from the symmetry required to couple a massless spin two particle to matter (diffeomorphism invariance). But the same identities also predict violations of the weak equivalence principle relatively suppressed by at least two powers of the gravitational couplings, and imply that quantum corrections do not preserve the structure of the action of these theories. We illustrate our analysis with a set of specific examples for spin zero and spin half matter fields that show why matter couplings do respect the equivalence principle, and how the couplings to the gravitational scalar lead to the weak equivalence principle violations predicted by the Ward identities.