No Arabic abstract
Propagating atomic vibrational waves, phonons, rule important thermal, mechanical, optoelectronic and transport characteristics of materials. Thus the knowledge of phonon dispersion, namely the dependence of vibrational energy on momentum is a key ingredient to understand and optimize the materials behavior. However, despite its scientific importance in the last decade, the phonon dispersion of a freestanding monolayer of two dimensional (2D) materials such as graphene and its local variations has still remained elusive because of experimental limitations of vibrational spectroscopy. Even though electron energy loss spectroscopy (EELS) in transmission has recently been shown to probe the local vibrational charge responses, these studies are yet limited to polar materials like boron nitride or oxides, in which huge signals induced by strong dipole moments are present. On the other hand, measurements on graphene performed by inelastic x-ray (neutron) scattering spectroscopy or EELS in reflection do not have any spatial resolution and require large microcrystals. Here we provide a new pathway to determine the phonon dispersions down to the scale of an individual freestanding graphene monolayer by mapping the distinct vibration modes for a large momentum transfer. The measured scattering intensities are accurately reproduced and interpreted with density functional perturbation theory (DFPT). Additionally, a nanometre-scale mapping of selected momentum (q) resolved vibration modes using graphene nanoribbon structures has enabled us to spatially disentangle bulk, edge and surface vibrations.
Despite decades of research, the ultimate goal of nanotechnology--top-down manipulation of individual atoms--has been directly achieved with only one technique: scanning probe microscopy. In this Review, we demonstrate that scanning transmission electron microscopy (STEM) is emerging as an alternative method for the direct assembly of nanostructures, with possible applications in plasmonics, quantum technologies, and materials science. Atomically precise manipulation with STEM relies on recent advances in instrumentation that have enabled non-destructive atomic-resolution imaging at lower electron energies. While momentum transfer from highly energetic electrons often leads to atom ejection, interesting dynamics can be induced when the transferable kinetic energies are comparable to bond strengths in the material. Operating in this regime, very recent experiments have revealed the potential for single-atom manipulation using the Angstrom-sized electron beam. To truly enable control, however, it is vital to understand the relevant atomic-scale phenomena through accurate dynamical simulations. Although excellent agreement between experiment and theory for the specific case of atomic displacements from graphene has been recently achieved using density functional theory molecular dynamics, in many other cases quantitative accuracy remains a challenge. We provide a comprehensive reanalysis of available experimental data on beam-driven dynamics in light of the state-of-the-art in simulations, and identify important targets for improvement. Overall, the modern electron microscope has great potential to become an atom-scale fabrication platform, especially for covalently bonded 2D nanostructures. We review the developments that have made this possible, argue that graphene is an ideal starting material, and assess the main challenges moving forward.
Transmission electron microscopy (TEM) and scanning TEM (STEM) are indispensable tools for materials characterization. However, during a typical (S)TEM experiment, the sample is subject to a number of effects that can change its atomic structure. Of these, perhaps the least discussed are chemical modifications due to the non-ideal vacuum around the sample. With single-layer graphene, we show that even at relatively low pressures typical for many instruments, these processes can have a significant impact on the sample structure. For example, pore growth becomes up to two orders of magnitude faster at a pressure of ca. 10^{-6} mbar as compared to ultra-high vacuum (UHV; 10^{-10} mbar). Even more remarkably,the presence of oxygen at the sample also changes the observed atomic structure: When imaged in UHV, nearly 90% of the identifiable graphene edge configurations have the armchair structure, whereas armchair and zigzag structures are nearly equally likely to occur when the oxygen partial pressure in the column is higher. Our results both bring attention to the role of the often neglected vacuum composition of the microscope column, and show that control over it can allow atomic-scale tailoring of the specimen structure.
When magnetic properties are analysed in a TEM using the technique of electron magnetic circular dichroism (EMCD), one of the critical parameters is the sample orientation, and this, independently on the chosen acquisition geometry. Since small orientation changes can have a strong impact on the EMCD measurement, it is experimentally non trivial to measure the EMCD signal as a function of sample orientation. The classical EMCD experimental setup requires to tilt the crystal in a 2 beam orientation and to acquire two electron energy loss spectra at two conjugate scattering angles. The effect of a mistilt from the perfect 2-beam orientation on the measured EMCD signals has not been explored yet due to different experimental constraints. In order to maintain the exact sample location and orientation for the acquisition of the EMCD signal, we have developed a methodology to simultaneously map the quantitative EMCD signals and the local orientation of the crystal. We analyse, both experimentally and with simulations, how the measured magnetic signals evolve with a change in the crystal tilt from the exact 2-beam orientation. Based on this analysis, we establish an accurate relationship between the crystal orientations and the EMCD signals. Our results demonstrate that a small crystal tilt away from the 2-beam orientation can significantly alter the strength and the distribution of the EMCD signals. From an optimisation of the crystal orientation, we obtain quantitative EMCD measurements.
The spatial distributions of anti-bonding $pi^ast$ and $sigma^ast$ states in epitaxial graphene multilayers are mapped using electron energy-loss spectroscopy in a scanning transmission electron microscope. Inelastic channeling simulations validate the interpretation of the spatially-resolved signals in terms of electronic orbitals, and demonstrate the crucial effect of the material thickness on the experimental capability to resolve the distribution of unoccupied states. This work illustrates the current potential of core-level electron energy-loss spectroscopy towards the direct visualization of electronic orbitals in a wide range of materials, of huge interest to better understand chemical bonding among many other properties at interfaces and defects in solids.
Two-dimensional (2D) materials for their versatile band structures and strictly 2D nature have attracted considerable attention over the past decade. Graphene is a robust material for spintronics owing to its weak spin-orbit and hyperfine interactions, while monolayer transition metal dichalcogenides (TMDs) possess a Zeeman effect-like band splitting in which the spin and valley degrees of freedom are nondegenerate. The surface states of topological insulators (TIs) exhibit a spin-momentum locking that opens up the possibility of controlling the spin degree of freedom in the absence of an external magnetic field. Nanostructures made of these materials are also viable for use in quantum computing applications involving the superposition and entanglement of individual charge and spin quanta. In this article, we review a selection of transport studies addressing the confinement and manipulation of charges in nanostructures fabricated from various 2D materials. We supply the entry-level knowledge for this field by first introducing the fundamental properties of 2D bulk materials followed by the theoretical background relevant to the physics of nanostructures. Subsequently, a historical review of experimental development in this field is presented, from the early demonstration of graphene nanodevices on SiO2 substrate to more recent progress in utilizing hexagonal boron nitride to reduce substrate disorder. In the second part of this article, we extend our discussion to TMDs and TI nanostructures. We aim to outline the current challenges and suggest how future work will be geared towards developing spin qubits in 2D materials.