Do you want to publish a course? Click here

Single-electron Transport in Graphene-like Nanostructures

62   0   0.0 ( 0 )
 Added by Kuei-Lin Chiu
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) materials for their versatile band structures and strictly 2D nature have attracted considerable attention over the past decade. Graphene is a robust material for spintronics owing to its weak spin-orbit and hyperfine interactions, while monolayer transition metal dichalcogenides (TMDs) possess a Zeeman effect-like band splitting in which the spin and valley degrees of freedom are nondegenerate. The surface states of topological insulators (TIs) exhibit a spin-momentum locking that opens up the possibility of controlling the spin degree of freedom in the absence of an external magnetic field. Nanostructures made of these materials are also viable for use in quantum computing applications involving the superposition and entanglement of individual charge and spin quanta. In this article, we review a selection of transport studies addressing the confinement and manipulation of charges in nanostructures fabricated from various 2D materials. We supply the entry-level knowledge for this field by first introducing the fundamental properties of 2D bulk materials followed by the theoretical background relevant to the physics of nanostructures. Subsequently, a historical review of experimental development in this field is presented, from the early demonstration of graphene nanodevices on SiO2 substrate to more recent progress in utilizing hexagonal boron nitride to reduce substrate disorder. In the second part of this article, we extend our discussion to TMDs and TI nanostructures. We aim to outline the current challenges and suggest how future work will be geared towards developing spin qubits in 2D materials.



rate research

Read More

We report an electron transport study of lithographically fabricated graphene nanoribbons of various widths and lengths at different temperatures. At the charge neutrality point, a length-independent transport gap forms whose size is inversely proportional to the width. In this gap, electron is localized, and charge transport exhibits a transition between simple thermally activated behavior at higher temperatures and a variable range hopping at lower temperatures. By varying the geometric capacitance through the addition of top gates, we find that charging effects constitute a significant portion of the activation energy.
We theoretically study the inelastic scattering rate and the carrier mean free path for energetic hot electrons in graphene, including both electron-electron and electron-phonon interactions. Taking account of optical phonon emission and electron-electron scattering, we find that the inelastic scattering time $tau sim 10^{-2}-10^{-1} mathrm{ps}$ and the mean free path $l sim 10-10^2 mathrm{nm}$ for electron densities $n = 10^{12}-10^{13} mathrm{cm}^{-2}$. In particular, we find that the mean free path exhibits a finite jump at the phonon energy $200 mathrm{meV}$ due to electron-phonon interaction. Our results are directly applicable to device structures where ballistic transport is relevant with inelastic scattering dominating over elastic scattering.
Predictions state that graphene can spontaneously develop magnetism from the Coulomb repulsion of its $pi$-electrons, but its experimental verification has been a challenge. Here, we report on the observation and manipulation of individual magnetic moments localized in graphene nanostructures on a Au(111) surface. Using scanning tunneling spectroscopy, we detected the presence of single electron spins localized around certain zigzag sites of the carbon backbone via the Kondo effect. Two near-by spins were found coupled into a singlet ground state, and the strength of their exchange interaction was measured via singlet-triplet inelastic tunnel electron excitations. Theoretical simulations demonstrate that electron correlations result in spin-polarized radical states with the experimentally observed spatial distributions. Hydrogen atoms bound to these radical sites quench their magnetic moment, permitting us to switch the spin of the nanostructure using the tip of the microscope.
We report the first temperature dependent phonon transport measurements in suspended Cu-CVD single layer graphene (SLG) from 15K to 380K using microfabricated suspended devices. The thermal conductance per unit cross section $sigma$/A increases with temperature and exhibits a peak near T~280K ($pm$10K) due to the Umklapp process. At low temperatures (T<140K), the temperature dependent thermal conductivity scales as ~T^{1.5}, suggesting that the main contribution to thermal conductance arises from flexural acoustic (ZA) phonons in suspended SLG. The $sigma$/A reaches a high value of 1.7$times10^5 T^{1.5}$ W/m^2K, which is approaching the expected ballistic phonon thermal conductance for two-dimensional graphene sheets. Our results not only clarify the ambiguity in the thermal conductance, but also demonstrate the potential of Cu-CVD graphene for heat related applications.
We report electronic transport experiments on a graphene single electron transistor. The device consists of a graphene island connected to source and drain electrodes via two narrow graphene constrictions. It is electrostatically tunable by three lateral graphene gates and an additional back gate. The tunneling coupling is a strongly nonmonotonic function of gate voltage indicating the presence of localized states in the barriers. We investigate energy scales for the tunneling gap, the resonances in the constrictions and for the Coulomb blockade resonances. From Coulomb diamond measurements in different device configurations (i.e. barrier configurations) we extract a charging energy of 3.4 meV and estimate a characteristic energy scale for the constriction resonances of 10 meV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا