Do you want to publish a course? Click here

QCD Sum Rules Approach to the $X,~Y$ and $Z$ States

164   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In the past decade, due to the experimental observation of many charmonium-like states, there has been a revival of hadron spectroscopy. In particular, the experimental observation of charged charmonium-like, $Z_c$ states, and bottomonium-like, $Z_b$ states, represents a challenge since they can not be accommodated within the naive quark model. These charged states are good candidates of either tetraquark or molecular states and their observation motivated a vigorous theoretical activity. This is a rapidly evolving field with enormous amount of new experimental information. In this work, we review the current experimental progress and investigate various theoretical interpretations of these candidates of the multiquark states. The present review is written from the perspective of the QCD sum rules approach, where we present the main steps of concrete calculations and compare the results with other approaches and with experimental data.



rate research

Read More

Using the QCD sum rules we test if the charmonium-like structure Y(4260), observed in the $J/psipipi$ invariant mass spectrum, can be described with a $J/psi f_0(980)$ molecular current with $J^{PC}=1^{--}$. We consider the contributions of condensates up to dimension six and we work at leading order in $alpha_s$. We keep terms which are linear in the strange quark mass $m_s$. The mass obtained for such state is $m_{Y}=(4.67pm 0.09)$ GeV, when the vector and scalar mesons are in color singlet configurations. We conclude that the proposed current can better describe the Y(4660) state that could be interpreted as a $Psi(2S) f_0(980)$ molecular state. We also use different $J^{PC}=1^{--}$ currents to study the recently observed $Y_b(10890)$ state. Our findings indicate that the $Y_b(10890)$ can be well described by a scalar-vector tetraquark current.
Many new states in the charmonium mass region were recently discovered by BaBar, Belle, CLEO-c, CDF, D0, BESIII, LHCb and CMS Collaborations. We use the QCD Sum Rule approach to study the possible structure of some of these states.
We study $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular states as mixed states in QCD sum rules. By calculating the two-point correlation functions of pure states of their corresponding currents, we review the mass and coupling constant predictions of $J^{PC}=1^{++}$, $1^{--}$, $1^{-+}$ molecular states. By calculating the two-point mixed correlation functions of $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ molecular currents, and we estimate the mass and coupling constants of the corresponding ``physical state that couples to both $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ currents. Our results suggest that $1^{++}$ states are more likely mixing from $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$ components, while for $1^{--}$ and $1^{-+}$ states, there is less mixing between $bar{Q}Qbar{q}q$ and $bar{Q}qQbar{q}$. Our results suggest the $Y$ series of states have more complicated components.
In the past years there has been a revival of hadron spectroscopy. Many interesting new hadron states were discovered experimentally, some of which do not fit easily into the quark model. This situation motivated a vigorous theoretical activity. This is a rapidly evolving field with enormous amount of new experimental information. In the present report we include and discuss data which were released very recently. The present review is the first one written from the perspective of QCD sum rules (QCDSR), where we present the main steps of concrete calculations and compare the results with other approaches and with experimental data.
We calculate the form factors and the coupling constant in the $D^{*}D rho $ vertex in the framework of QCD sum rules. We evaluate the three point correlation functions of the vertex considering both $ D $ and $ rho $ mesons off--shell. The form factors obtained are very different but give the same coupling constant: $g_{D^{*}D rho} = 4.1 pm 0.1$ GeV$^{-1}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا