Do you want to publish a course? Click here

An Empirical Study of Generative Models with Encoders

76   0   0.0 ( 0 )
 Added by Paul Rubenstein
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Generative adversarial networks (GANs) are capable of producing high quality image samples. However, unlike variational autoencoders (VAEs), GANs lack encoders that provide the inverse mapping for the generators, i.e., encode images back to the latent space. In this work, we consider adversarially learned generative models that also have encoders. We evaluate models based on their ability to produce high quality samples and reconstructions of real images. Our main contributions are twofold: First, we find that the baseline Bidirectional GAN (BiGAN) can be improved upon with the addition of an autoencoder loss, at the expense of an extra hyper-parameter to tune. Second, we show that comparable performance to BiGAN can be obtained by simply training an encoder to invert the generator of a normal GAN.



rate research

Read More

The input space of a neural network with ReLU-like activations is partitioned into multiple linear regions, each corresponding to a specific activation pattern of the included ReLU-like activations. We demonstrate that this partition exhibits the following encoding properties across a variety of deep learning models: (1) {it determinism}: almost every linear region contains at most one training example. We can therefore represent almost every training example by a unique activation pattern, which is parameterized by a {it neural code}; and (2) {it categorization}: according to the neural code, simple algorithms, such as $K$-Means, $K$-NN, and logistic regression, can achieve fairly good performance on both training and test data. These encoding properties surprisingly suggest that {it normal neural networks well-trained for classification behave as hash encoders without any extra efforts.} In addition, the encoding properties exhibit variability in different scenarios. {Further experiments demonstrate that {it model size}, {it training time}, {it training sample size}, {it regularization}, and {it label noise} contribute in shaping the encoding properties, while the impacts of the first three are dominant.} We then define an {it activation hash phase chart} to represent the space expanded by {model size}, training time, training sample size, and the encoding properties, which is divided into three canonical regions: {it under-expressive regime}, {it critically-expressive regime}, and {it sufficiently-expressive regime}. The source code package is available at url{https://github.com/LeavesLei/activation-code}.
In compressed sensing, a small number of linear measurements can be used to reconstruct an unknown signal. Existing approaches leverage assumptions on the structure of these signals, such as sparsity or the availability of a generative model. A domain-specific generative model can provide a stronger prior and thus allow for recovery with far fewer measurements. However, unlike sparsity-based approaches, existing methods based on generative models guarantee exact recovery only over their support, which is typically only a small subset of the space on which the signals are defined. We propose Sparse-Gen, a framework that allows for sparse deviations from the support set, thereby achieving the best of both worlds by using a domain specific prior and allowing reconstruction over the full space of signals. Theoretically, our framework provides a new class of signals that can be acquired using compressed sensing, reducing classic sparse vector recovery to a special case and avoiding the restrictive support due to a generative model prior. Empirically, we observe consistent improvements in reconstruction accuracy over competing approaches, especially in the more practical setting of transfer compressed sensing where a generative model for a data-rich, source domain aids sensing on a data-scarce, target domain.
We address tracking and prediction of multiple moving objects in visual data streams as inference and sampling in a disentangled latent state-space model. By encoding objects separately and including explicit position information in the latent state space, we perform tracking via amortized variational Bayesian inference of the respective latent positions. Inference is implemented in a modular neural framework tailored towards our disentangled latent space. Generative and inference model are jointly learned from observations only. Comparing to related prior work, we empirically show that our Markovian state-space assumption enables faithful and much improved long-term prediction well beyond the training horizon. Further, our inference model correctly decomposes frames into objects, even in the presence of occlusions. Tracking performance is increased significantly over prior art.
The goal of compressed sensing is to estimate a high dimensional vector from an underdetermined system of noisy linear equations. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the vector is represented by a deep generative model $G: mathbb{R}^k rightarrow mathbb{R}^n$. Classical recovery approaches such as empirical risk minimization (ERM) are guaranteed to succeed when the measurement matrix is sub-Gaussian. However, when the measurement matrix and measurements are heavy-tailed or have outliers, recovery may fail dramatically. In this paper we propose an algorithm inspired by the Median-of-Means (MOM). Our algorithm guarantees recovery for heavy-tailed data, even in the presence of outliers. Theoretically, our results show our novel MOM-based algorithm enjoys the same sample complexity guarantees as ERM under sub-Gaussian assumptions. Our experiments validate both aspects of our claims: other algorithms are indeed fragile and fail under heavy-tailed and/or corrupted data, while our approach exhibits the predicted robustness.
The notion of individual fairness requires that similar people receive similar treatment. However, this is hard to achieve in practice since it is difficult to specify the appropriate similarity metric. In this work, we attempt to learn such similarity metric from human annotated data. We gather a new dataset of human judgments on a criminal recidivism prediction (COMPAS) task. By assuming the human supervision obeys the principle of individual fairness, we leverage prior work on metric learning, evaluate the performance of several metric learning methods on our dataset, and show that the learned metrics outperform the Euclidean and Precision metric under various criteria. We do not provide a way to directly learn a similarity metric satisfying the individual fairness, but to provide an empirical study on how to derive the similarity metric from human supervisors, then future work can use this as a tool to understand human supervision.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا