Do you want to publish a course? Click here

Tomographic weak lensing bispectrum: a thorough analysis towards the next generation of galaxy surveys

136   0   0.0 ( 0 )
 Added by Matteo Rizzato
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We address key points for an efficient implementation of likelihood codes for modern weak lensing large-scale structure surveys. Specifically, we focus on the joint weak lensing convergence power spectrum-bispectrum probe and we tackle the numerical challenges required by a realistic analysis. Under the assumption of (multivariate) Gaussian likelihoods, we have developed a high performance code that allows highly parallelised prediction of the binned tomographic observables and of their joint non-Gaussian covariance matrix accounting for terms up to the 6-point correlation function and super-sample effects. This performance allows us to qualitatively address several interesting scientific questions. We find that the bispectrum provides an improvement in terms of signal-to-noise ratio (S/N) of about 10% on top of the power spectrum, making it a non-negligible source of information for future surveys. Furthermore, we are capable to test the impact of theoretical uncertainties in the halo model used to build our observables; with presently allowed variations we conclude that the impact is negligible on the S/N. Finally, we consider data compression possibilities to optimise future analyses of the weak lensing bispectrum. We find that, ignoring systematics, 5 equipopulated redshift bins are enough to recover the information content of a Euclid-like survey, with negligible improvement when increasing to 10 bins. We also explore principal component analysis and dependence on the triangle shapes as ways to reduce the numerical complexity of the problem.



rate research

Read More

We explore the effect of massive neutrinos on the weak lensing shear bispectrum using the Cosmological Massive Neutrino Simulations. We find that the primary effect of massive neutrinos is to suppress the amplitude of the bispectrum with limited effect on the bispectrum shape. The suppression of the bispectrum amplitude is a factor of two greater than the suppression of the small scale power-spectrum. For an LSST-like weak lensing survey that observes half of the sky with five tomographic redshift bins, we explore the constraining power of the bispectrum on three cosmological parameters: the sum of the neutrino mass $sum m_ u$, the matter density $Omega_m$ and the amplitude of primordial fluctuations $A_s$. Bispectrum measurements alone provide similar constraints to the power spectrum measurements and combining the two probes leads to significant improvements than using the latter alone. We find that the joint constraints tighten the power spectrum $95%$ constraints by $sim 32%$ for $sum m_ u$, $13%$ for $Omega_m$ and $57%$ for $A_s$ .
Recent studies have demonstrated that {em secondary} non-Gaussianity induced by gravity will be detected with a high signal-to-noise (S/N) by future and even by on-going weak lensing surveys. One way to characterise such non-Gaussianity is through the detection of a non-zero three-point correlation function of the lensing convergence field, or of its harmonic transform, the bispectrum. A recent study analysed the properties of the squeezed configuration of the bispectrum, when two wavenumbers are much larger than the third one. We extend this work by estimating the amplitude of the (reduced) bispectrum in four generic configurations, i.e., {em squeezed, equilateral, isosceles} and {em folded}, and for four different source redshifts $z_s=0.5,1.0,1.5,2.0$, by using an ensemble of all-sky high-resolution simulations. We compare these results against theoretical predictions. We find that, while the theoretical expectations based on widely used fitting functions can predict the general trends of the reduced bispectra, a more accurate theoretical modelling will be required to analyse the next generation of all-sky weak lensing surveys. The disagreement is particularly pronounced in the squeezed limit.
We present a finely-binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5<theta<35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum sigma_8 = 0.799 +/- 0.015 and the matter density parameter Omega_m = 0.271 +/- 0.010 for a flat Lambda CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = -1.02 +/- 0.09. We also provide constraints for curved Lambda CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.
We use dense redshift surveys of nine galaxy clusters at $zsim0.2$ to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70--89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross correlate the galaxy number density maps with the weak-lensing maps. The cross correlation signal when we include foreground and background galaxies at 0.5$z_{rm cl}<z<2z_{rm cl}$ is $10-23$% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross correlation signal excesses ($>$20% for A383, A689 and A750). The fractional excess in the cross correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.
The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-colour (u*griz) photometry spanning 154 square degrees, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distribution function summed over galaxies provides an accurate representation of the galaxy redshift distribution accounting for random and catastrophic errors for galaxies with best fitting photometric redshifts z_p < 1.3. We present cosmological constraints using tomographic weak gravitational lensing by large-scale structure. We use two broad redshift bins 0.5 < z_p <= 0.85 and 0.85 < z_p <= 1.3 free of intrinsic alignment contamination, and measure the shear correlation function on angular scales in the range ~1-40 arcmin. We show that the problematic redshift scaling of the shear signal, found in previous CFHTLS data analyses, does not afflict the CFHTLenS data. For a flat Lambda-CDM model and a fixed matter density Omega_m=0.27, we find the normalisation of the matter power spectrum sigma_8=0.771 pm 0.041. When combined with cosmic microwave background data (WMAP7), baryon acoustic oscillation data (BOSS), and a prior on the Hubble constant from the HST distance ladder, we find that CFHTLenS improves the precision of the fully marginalised parameter estimates by an average factor of 1.5-2. Combining our results with the above cosmological probes, we find Omega_m=0.2762 pm 0.0074 and sigma_8=0.802 pm 0.013.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا