Do you want to publish a course? Click here

CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments

276   0   0.0 ( 0 )
 Added by Catherine Heymans
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a finely-binned tomographic weak lensing analysis of the Canada-France-Hawaii Telescope Lensing Survey, CFHTLenS, mitigating contamination to the signal from the presence of intrinsic galaxy alignments via the simultaneous fit of a cosmological model and an intrinsic alignment model. CFHTLenS spans 154 square degrees in five optical bands, with accurate shear and photometric redshifts for a galaxy sample with a median redshift of zm =0.70. We estimate the 21 sets of cosmic shear correlation functions associated with six redshift bins, each spanning the angular range of 1.5<theta<35 arcmin. We combine this CFHTLenS data with auxiliary cosmological probes: the cosmic microwave background with data from WMAP7, baryon acoustic oscillations with data from BOSS, and a prior on the Hubble constant from the HST distance ladder. This leads to constraints on the normalisation of the matter power spectrum sigma_8 = 0.799 +/- 0.015 and the matter density parameter Omega_m = 0.271 +/- 0.010 for a flat Lambda CDM cosmology. For a flat wCDM cosmology we constrain the dark energy equation of state parameter w = -1.02 +/- 0.09. We also provide constraints for curved Lambda CDM and wCDM cosmologies. We find the intrinsic alignment contamination to be galaxy-type dependent with a significant intrinsic alignment signal found for early-type galaxies, in contrast to the late-type galaxy sample for which the intrinsic alignment signal is found to be consistent with zero.



rate research

Read More

We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450deg$^2$ of imaging data from the Kilo Degree Survey (KiDS). For a flat $Lambda$CDM cosmology with a prior on $H_0$ that encompasses the most recent direct measurements, we find $S_8equivsigma_8sqrt{Omega_{rm m}/0.3}=0.745pm0.039$. This result is in good agreement with other low redshift probes of large scale structure, including recent cosmic shear results, along with pre-Planck cosmic microwave background constraints. A $2.3$-$sigma$ tension in $S_8$ and `substantial discordance in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved `self-calibrating version of $lens$fit validated using an extensive suite of image simulations. Four-band $ugri$ photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov Chains are available at http://kids.strw.leidenuniv.nl.
The Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-colour (u*griz) photometry spanning 154 square degrees, with accurate photometric redshifts and shape measurements. We demonstrate that the redshift probability distribution function summed over galaxies provides an accurate representation of the galaxy redshift distribution accounting for random and catastrophic errors for galaxies with best fitting photometric redshifts z_p < 1.3. We present cosmological constraints using tomographic weak gravitational lensing by large-scale structure. We use two broad redshift bins 0.5 < z_p <= 0.85 and 0.85 < z_p <= 1.3 free of intrinsic alignment contamination, and measure the shear correlation function on angular scales in the range ~1-40 arcmin. We show that the problematic redshift scaling of the shear signal, found in previous CFHTLS data analyses, does not afflict the CFHTLenS data. For a flat Lambda-CDM model and a fixed matter density Omega_m=0.27, we find the normalisation of the matter power spectrum sigma_8=0.771 pm 0.041. When combined with cosmic microwave background data (WMAP7), baryon acoustic oscillation data (BOSS), and a prior on the Hubble constant from the HST distance ladder, we find that CFHTLenS improves the precision of the fully marginalised parameter estimates by an average factor of 1.5-2. Combining our results with the above cosmological probes, we find Omega_m=0.2762 pm 0.0074 and sigma_8=0.802 pm 0.013.
210 - Andrea Petri 2015
Weak gravitational lensing is a powerful cosmological probe, with non--Gaussian features potentially containing the majority of the information. We examine constraints on the parameter triplet $(Omega_m,w,sigma_8)$ from non-Gaussian features of the weak lensing convergence field, including a set of moments (up to $4^{rm th}$ order) and Minkowski functionals, using publicly available data from the 154deg$^2$ CFHTLenS survey. We utilize a suite of ray--tracing N-body simulations spanning 91 points in $(Omega_m,w,sigma_8)$ parameter space, replicating the galaxy sky positions, redshifts and shape noise in the CFHTLenS catalogs. We then build an emulator that interpolates the simulated descriptors as a function of $(Omega_m,w,sigma_8)$, and use it to compute the likelihood function and parameter constraints. We employ a principal component analysis to reduce dimensionality and to help stabilize the constraints with respect to the number of bins used to construct each statistic. Using the full set of statistics, we find $Sigma_8equivsigma_8(Omega_m/0.27)^{0.55}=0.75pm0.04$ (68% C.L.), in agreement with previous values. We find that constraints on the $(Omega_m,sigma_8)$ doublet from the Minkowski functionals suffer a strong bias. However, high-order moments break the $(Omega_m,sigma_8)$ degeneracy and provide a tight constraint on these parameters with no apparent bias. The main contribution comes from quartic moments of derivatives.
Intrinsic galaxy alignments constitute the major astrophysical systematic of forthcoming weak gravitational lensing surveys but also yield unique insights into galaxy formation and evolution. We build analytic models for the distribution of galaxy shapes based on halo properties extracted from the Millennium Simulation, differentiating between early- and late-type galaxies as well as central galaxies and satellites. The resulting ellipticity correlations are investigated for their physical properties and compared to a suite of current observations. The best-faring model is then used to predict the intrinsic alignment contamination of planned weak lensing surveys. We find that late-type galaxy models generally have weak intrinsic ellipticity correlations, marginally increasing towards smaller galaxy separation and higher redshift. The signal for early-type models at fixed halo mass strongly increases by three orders of magnitude over two decades in galaxy separation, and by one order of magnitude from z=0 to z=2. The intrinsic alignment strength also depends strongly on halo mass, but not on galaxy luminosity at fixed mass, or galaxy number density in the environment. We identify models that are in good agreement with all observational data, except that all models over-predict alignments of faint early-type galaxies. The best model yields an intrinsic alignment contamination of a Euclid-like survey between 0.5-10% at z>0.6 and on angular scales larger than a few arcminutes. Cutting 20% of red foreground galaxies using observer-frame colours can suppress this contamination by up to a factor of two.
We present measurements of the weak gravitational lensing shear power spectrum based on $450$ sq. deg. of imaging data from the Kilo Degree Survey. We employ a quadratic estimator in two and three redshift bins and extract band powers of redshift auto-correlation and cross-correlation spectra in the multipole range $76 leq ell leq 1310$. The cosmological interpretation of the measured shear power spectra is performed in a Bayesian framework assuming a $Lambda$CDM model with spatially flat geometry, while accounting for small residual uncertainties in the shear calibration and redshift distributions as well as marginalising over intrinsic alignments, baryon feedback and an excess-noise power model. Moreover, massive neutrinos are included in the modelling. The cosmological main result is expressed in terms of the parameter combination $S_8 equiv sigma_8 sqrt{Omega_{rm m}/0.3}$ yielding $S_8 = 0.651 pm 0.058$ (3 z-bins), confirming the recently reported tension in this parameter with constraints from Planck at $3.2sigma$ (3 z-bins). We cross-check the results of the 3 z-bin analysis with the weaker constraints from the 2 z-bin analysis and find them to be consistent. The high-level data products of this analysis, such as the band power measurements, covariance matrices, redshift distributions, and likelihood evaluation chains are available at http://kids.strw.leidenuniv.nl/
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا