Do you want to publish a course? Click here

Massive Dead Galaxies at z~2 with HST Grism Spectroscopy I. Star Formation Histories and Metallicity Enrichment

82   0   0.0 ( 0 )
 Added by Takahiro Morishita
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations have revealed massive (logM*/Msun>11) galaxies that were already dead when the universe was only ~2 Gyr. Given the short time before these galaxies were quenched, their past histories and quenching mechanism(s) are of particular interest. In this paper, we study star formation histories (SFHs) of 24 massive galaxies at 1.6<z<2.5. A deep slitless spectroscopy + imaging data set collected from multiple Hubble Space Telescope surveys allows robust determination of their spectral energy distributions and SFHs with no functional assumption on their forms. We find that most of our massive galaxies had formed > 50% of their extant masses by ~1.5 Gyr before the time of observed redshifts, with a trend where more massive galaxies form earlier. Their stellar-phase metallicities are already compatible with those of local early-type galaxies, with a median value of logZ*/Zsun=0.25 and scatter of ~0.15dex. In combination with the reconstructed SFHs, we reveal their rapid metallicity evolution from z~5.5 to ~2.2 at a rate of ~0.2dex/Gyr in log Z*/Zsun. Interestingly, the inferred stellar-phase metallicities are, when compared at half-mass time, ~0.25dex higher than observed gas-phase metallicities of star forming galaxies. While systematic uncertainties remain, this may imply that these quenched galaxies have continued low-level star formation, rather than abruptly terminating their star formation activity, and kept enhancing their metallicity until recently.



rate research

Read More

We present a Bayesian full-spectral-fitting analysis of 75 massive ($M_* > 10^{10.3} M_odot$) UVJ-selected galaxies at redshifts of $1.0 < z < 1.3$, combining extremely deep rest-frame ultraviolet spectroscopy from VANDELS with multi-wavelength photometry. By the use of a sophisticated physical plus systematic uncertainties model, constructed within the Bagpipes code, we place strong constraints on the star-formation histories (SFHs) of individual objects. We firstly constrain the stellar mass vs stellar age relationship, finding a steep trend towards earlier average formation with increasing stellar mass of $1.48^{+0.34}_{-0.39}$ Gyr per decade in mass, although this shows signs of flattening at $M_* > 10^{11} M_odot$. We show that this is consistent with other spectroscopic studies from $0 < z < 2$. This relationship places strong constraints on the AGN-feedback models used in cosmological simulations. We demonstrate that, although the relationships predicted by Simba and IllustrisTNG agree well with observations at $z=0.1$, they are too shallow at $z=1$, predicting an evolution of $<0.5$ Gyr per decade in mass. Secondly, we consider the connections between green-valley, post-starburst and quiescent galaxies, using our inferred SFH shapes and the distributions of galaxy physical properties on the UVJ diagram. The majority of our lowest-mass galaxies ($M_* sim 10^{10.5} M_odot$) are consistent with formation in recent ($z<2$), intense starburst events, with timescales of $lesssim500$ Myr. A second class of objects experience extended star-formation epochs before rapidly quenching, passing through both green-valley and post-starburst phases. The most massive galaxies in our sample are extreme systems: already old by $z=1$, they formed at $zsim5$ and quenched by $z=3$. However, we find evidence for their continued evolution through both AGN and rejuvenated star-formation activity.
We present Keck-MOSFIRE H and K spectra for a sample of 24 candidate quiescent galaxies (QGs) at 3<z<4, identified from UVJ colors and photometric redshifts in the ZFOURGE and 3DHST surveys. We obtain spectroscopic redshifts for half of the sample, using absorption or emission lines, and confirm the high accuracy of the photometric redshifts with a median error of 1.2%. Two galaxies turn out to be dusty objects at lower redshifts (z<2.5), and are the only two detected in the sub-mm with ALMA. High equivalent-width [OIII] was observed in two galaxies, contributing up to 30% of the K-band flux and mimicking the colors of an old stellar population. This implies a failure rate of only 20% for the UVJ selection at these redshifts. Balmer absorption was identified in 4 of the brighest galaxies, confirming the absence of OB stars. Modeling all QGs with a wide range of star-formation histories, we find sSFR a factor of 10 below the main sequence (MS) for all but one galaxy, and less than 0.01 Gyr$^{-1}$ for half of the sample. This is consistent with the H$beta$ and [OII] luminosities, and the ALMA non-detections. We then find that these QGs have quenched on average 300 Myr before observation, between z=3.5 and 5, and that they formed at z~5.5 with a mean SFR~300 Msun/yr. Considering an alternative selection of QGs based solely on the sSFR from SED modeling, we find that galaxies a factor 10 below the MS are 40% more numerous than UVJ-quiescent galaxies, implying that the UVJ selection is pure but incomplete. Current models fail at reproducing our observations and underestimate either the number density of QGs by more than an order of magnitude or the duration of their quiescence by a factor two. Overall, these results confirm the existence of an unexpected population of QGs at z>3, and offer the first insights on their formation history. [abridged]
A large sample of spectroscopically confirmed galaxies at 1.4<z<3.7, with complementary imaging in the near- and mid-IR from the ground and from Hubble and Spitzer, is used to infer the average star formation histories (SFHs) of typical galaxies from z~7 to 2. For a subset of 302 galaxies at 1.5<z<2.6, we perform a comparison of star formation rates (SFRs) determined from SED modeling (SFRs[SED]) and those calculated from deep Keck UV and Spitzer/MIPS 24 micron imaging (SFRs[IR+UV]). Exponentially declining SFHs yield SFRs[SED] that are 5-10x lower on average than SFRs[IR+UV], indicating that declining SFHs may not be accurate for typical galaxies at z>2. The SFRs of z~2-3 galaxies are directly proportional to their stellar masses M*, with unity slope---a result that is confirmed with Spitzer/IRAC stacks of 1179 UV-faint (R>25.5) galaxies---for M*>5e8 Msun and SFRs >2 Msun/yr. We interpret this result in the context of several systematic biases that can affect determinations of the SFR-M* relation. The average specific SFRs at z~2-3 are similar within a factor of two to those measured at z>4, implying an average SFH where SFRs increase with time. A consequence of these rising SFHs is that (a) a substantial fraction of UV-bright z~2-3 galaxies had faint sub-L* progenitors at z>4; and (b) gas masses must increase with time from z=7 to 2, over which time the net cold gas accretion rate---as inferred from the specific SFR and the Kennicutt-Schmidt relation---is ~2-3x larger than the SFR . However, if we evolve to higher redshift the SFHs and masses of the halos that are expected to host L* galaxies at z~2, we find that <10% of the baryons accreted onto typical halos at z>4 actually contribute to star formation at those epochs. These results highlight the relative inefficiency of star formation even at early cosmic times when galaxies were first assembling. [Abridged]
We reexamine the systematic properties of local galaxy populations, using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below the main sequence of star formation vs mass. We find an unexpectedly large population of galaxies with star formation rates intermediate between vigorously star-forming main sequence galaxies and passive galaxies, and with gas content disproportionately high for their star formation rates. Several lines of evidence suggest that these quiescent galaxies form a distinct population rather than a low star formation tail of the main sequence. We demonstrate that a tight main sequence, evolving with epoch, is a natural outcome of most histories of star formation and has little astrophysical significance, but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff in gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion requires another process, probably wind-driven mass loss. The SSFR distribution of the quiescent and passive implies that the timescale of this process must be greater than a few Gyrs but less than a few tens of Gyrs. The environmental dependence of the galaxy populations is consistent with recent theory suggesting that cold gas inflows into galaxies are truncated at earlier times in denser environments.
Examining a sample of massive galaxies at 1.4<z<2.5 with K_{Vega}<22 from the Great Observatories Origins Deep Survey, we compare photometry from Spitzer at mid- and far-IR, to submillimeter, radio and rest-frame ultraviolet wavelengths, to test the agreement between different tracers of star formation rates (SFRs) and to explore the implications for galaxy assembly. For z~2 galaxies with moderate luminosities(L_{8um}<10^{11}L_sun), we find that the SFR can be estimated consistently from the multiwavelength data based on local luminosity correlations. However,20--30% of massive galaxies, and nearly all those with L_{8um}>10^{11}L_sun, show a mid-IR excess which is likely due to the presence of obscured active nuclei, as shown in a companion paper. There is a tight and roughly linear correlation between stellar mass and SFR for 24um-detected galaxies. For a given mass, the SFR at z=2 was larger by a factor of ~4 and ~30 relative to that in star forming galaxies at z=1 and z=0, respectively. Typical ultraluminous infrared galaxies (ULIRGs) at z=2 are relatively transparent to ultraviolet light, and their activity is long lived (~400 Myr), unlike that in local ULIRGs and high redshift submillimeter-selected galaxies. ULIRGs are the common mode of star formation in massive galaxies at z=2, and the high duty cycle suggests that major mergers are not the dominant trigger for this activity.Current galaxy formation models underpredict the normalization of the mass-SFR correlation by about a factor of 4, and the space density of ULIRGs by an orderof magnitude, but give better agreement for z>1.4 quiescent galaxies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا