Do you want to publish a course? Click here

Cluster radioactivity of $^{294}_{118}$Og$_{176}$

77   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

According to theory, cluster radioactivity becomes an important decay mode in superheavy nuclei. In this work, we predict that the strongly-asymmetric fission, or cluster emission, is in fact the dominant fission channel for $^{294}_{118}$Og$_{176}$, which is currently the heaviest synthetic isotope known. Our theoretical approach incorporates important features of fission dynamics, including quantum tunneling and stochastic dynamics up to scission. We show that, despite appreciable differences in static fission properties such as fission barriers and spontaneous fission lifetimes, the prediction of cluster radioactivity in $^{294}_{118}$Og$_{176}$ is robust with respect to the details of calculations, including the choice of energy density functional, collective inertia, and the strength of the dissipation term.



rate research

Read More

A linear universal decay formula is presented starting from the microscopic mechanism of the charged-particle emission. It relates the half-lives of monopole radioactive decays with the $Q$-values of the outgoing particles as well as the masses and charges of the nuclei involved in the decay. This relation is found to be a generalization of the Geiger-Nuttall law in $alpha$ radioactivity and explains well all known cluster decays. Predictions on the most likely emissions of various clusters are presented.
In the present work considering the contributions of the daughter nuclear charge and the orbital angular momentum taken away by the emitted proton, we propose a two-parameter formula of new Geiger-Nuttall law for proton radioactivity. A set of universal parameters of this law is obtained by fitting 44 experimental data of proton emitters in the ground state and isomeric state. The calculated results can reproduce the experimental data well. For a comparison, the calculations performed using other theoretical methods, such as UDLP proposed by Qi, et al. [https://journals.aps.org/prc/abstract/10.1103/PhysRevC.85.011303], the CPPM-Guo2013 analyzed by our previous work [Deng, et al., https://link.springer.com/article/10.1140/epja/i2019-12728-0] and the modified Gamow-like model proposed by us [Chen, et al., https://iopscience.iop.org/article/10.1088/1361-6471/ab1a56] are also included. Meanwhile, we extend this new Geiger-Nuttall law to predict the proton radioactivity half-lives for $51 leq Z leq 91$ nuclei, whose proton radioactivity is energetically allowed or observed but not yet quantified in NUBASE2016.
In the present work, combining with the Geiger-Nuttall law, a two-parameter empirical formula is proposed to study the two-proton (2p) radioactivity. Using this formula, the calculated 2p radioactivity half-lives are in good agreement with the experimental data as well as the calculated ones obtained by Goncalves et al: ([Phys. Lett. B 774, 14 (2017)]) using the effective liquid drop model (ELDM), Sreeja et al: ([Eur. Phys. J. A 55, 33 (2019)]) using a four-parameter empirical formula and Cui et al: ([Phys. Rev. C 101: 014301 (2020)]) using a generalized liquid drop model (GLDM). In addition, this two-parameter empirical formula is extended to predict the half-lives of 22 possible 2p radioactivity candidates, whose the 2p radioactivity released energy Q2p>0, obtained from the latest evaluated atomic mass table AME2016. The predicted results have good consistency with ones using other theoretical models such as the ELDM, GLDM and four-parameter empirical formula.
Structural properties and the decay modes of the superheavy elements Z $=$ 122, 120, 118 are studied in a microscopic framework. We evaluate the binding energy, one- and two- proton and neutron separation energy, shell correction and density profile of even and odd isotopes of Z $=$ 122, 120, 118 (284 $leq$ A $leq$ 352) which show a reasonable match with FRDM results and the available experimental data. Equillibrium shape and deformation of the superheavy region are predicted. We investigate the possible decay modes of this region specifically $alpha$-decay, spontaneous fission (SF) and the $beta$-decay and evaluate the probable $alpha$-decay chains. The phenomena of bubble like structure in the charge density is predicted in $^{330}$122, $^{292,328}$120 and $^{326}$118 with significant depletion fraction around 20-24$%$ which increases with increasing Coulomb energy and diminishes with increasing isospin (N$-$Z) values exhibiting the fact that the coloumb forces are the main driving force in the central depletion in superheavy systems.
114 - Y. T. Zou , X. Pan , X. H. Li 2021
In this study, a phenomenological model is proposed based on Wentzel-Kramers-Brillouin (WKB) theory and applied to investigate the two-proton ($2p$) radioactive half-lives of nuclei near or beyond the proton drip line. The total diproton-daughter nucleus interaction potential is composed of the Hulthen-type electrostatic term and the centrifugal term. The calculated $2p$ radioactive half-lives can accurately reproduce the existing 10 experimental datasets of five true $2p$ radioactive nuclei with $sigma$ = 0.736. In addition, we extend this model to predict the half-lives of possible $2p$ radioactive nuclei whose $2p$ radioactivity is energetically allowed or observed but not yet quantified in NUBASE2016. The predicted results are in agreement with those obtained using the Gamow-like model, generalized liquid drop model, Sreeja formula, and Liu formula.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا