Do you want to publish a course? Click here

Pressure dependent intermediate valence behavior in YbNiGa$_{4}$ and YbNiIn$_{4}$

277   0   0.0 ( 0 )
 Added by Zachary Brubaker
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a comprehensive structural and valence study of the intermediate valent materials YbNiGa$_{4}$ and YbNiIn$_{4}$ under pressures up to 60 GPa. YbNiGa$_{4}$ undergoes a smooth volume contraction and shows steady increase in Yb-valence with pressure, though the Yb-valence reaches saturation around 25 GPa. In YbNiIn$_{4}$, a change in pressure dependence of the volume and a peak in Yb-valence suggest a pressure induced electronic topological transition occurs around 10-14 GPa. In the pressure region where YbNiIn$_{4}$ and YbNiGa$_{4}$ possess similar Yb-Yb spacings the Yb-valence reveals a precipitous drop. This drop is not captured by density-functional-theory calculations and implies that both the lattice degrees of freedom and the chemical environment play an important role in establishing the valence of Yb.



rate research

Read More

The novel ternary compound CeCo$_9$Si$_4$ has been studied by means of specific heat, magnetisation, and transport measurements. Single crystal X-ray Rietveld refinements reveal a fully ordered distribution of Ce, Co and Si atoms with the tetragonal space group I4/mcm isostructural with other RCo9Si4. The smaller lattice constants of CeCo9Si4 in comparison with the trend established by other RCo9Si4 is indicative for intermediate valence of cerium. While RCo9Si4 with R= Pr, .. Tb, and Y show ferromagnetism and LaCo9Si4 is nearly ferromagnetic, CeCo9Si4 remains paramagnetic even in external fields as large as 40 T, though its electronic specific heat coefficient (g~190 mJ/molK^2) is of similar magnitude as that of metamagnetic LaCo9Si4 and weakly ferromagnetic YCo9Si4.
We investigate the novel intermetallic ternary compounds emph{R}Co$_{9}$Ge$_{4}$ with emph{R} = La and Ce by means of $X$-ray diffraction, susceptibility and specific heat measurements. CeCo$_{9}$Ge$_{4}$ crystallizes in the space group ${I}$ 4/ ${mcm}$ and is characterized by the coexistence of two different magnetic sublattices. The Ce-based sublattice, with an effective moment close to the expected value for a Ce$^{3+}$-ion, exhibits a magnetically ordered ground state with $T_{mathrm{N}}=12.5$ K. The Co-based sublattice, however, exhibits magnetic moments due to itinerant 3$d$ electrons. The magnetic specific heat contribution of the Ce-sublattice is discussed in terms of a resonance-level model implying the interplay between an antiferromagnetic phase transition and the Kondo-effect and an underlying Schottky-anomaly indicating a crystal field level scheme splitting into three twofold degenerated micro states ($Delta_1 = 69$ K, $Delta_2 = 133$ K).
Electrical resistivity $rho$, specific heat C, and magnetic susceptibility $chi$ measurements made on the filled skutterudite CeRu_4As_{12} reveal non-Fermi liquid (NFL) T - dependences at low T, i.e., $rho$(T) $sim$ T^{1.4} and weak power law or logarithmic divergences in C(T)/T and $chi$(T). Measurements also show that the T - dependence of the thermoelectric power S(T) deviates from that seen in other Ce systems. The NFL behavior appears to be associated with fluctuations of the Ce valence between 3^+ and 4^+ rather than a typical Kondo lattice scenario that would be appropriate for an integral Ce valence of 3^+.
UTe$_2$ is a recently discovered unconventional superconductor that has attracted much interest due to its many intriguing properties - a large residual density-of-states in the superconducting state, re-entrant superconductivity in high magnetic fields, and potentially spin-triplet topological superconductivity. Our ac calorimetry, electrical resistivity, and x-ray absorption study of UTe$_2$ under applied pressure reveals key new insights on the superconducting and magnetic states surrounding pressure-induced quantum criticality at P$_{c1}$ = 1.3 GPa. First, our specific heat data at low pressures, combined with a phenomenological model, show that pressure alters the balance between two closely competing superconducting orders. Second, near 1.5 GPa we detect two bulk transitions that trigger changes in the resistivity which are consistent with antiferromagnetic order, rather than ferromagnetism. The presence of both bulk magnetism and superconductivity at pressures above P$_{c2}$ = 1.4 GPa results in a significant temperature difference between resistively and thermodynamically determined transitions into the superconducting state, which indicates a suppression of the superconducting volume fraction by magnetic order. Third, the emergence of magnetism is accompanied by an increase in valence towards a U$^{4+}$ (5f2) state, which indicates that UTe$_2$ exhibits intermediate valence at ambient pressure. Our results suggest that antiferromagnetic fluctuations may play a more significant role on the superconducting state of UTe$_2$ than previously thought.
We provide evidence for the existence of a {em quantum critical point} at the metallization of magnetite Fe$_{3}$O$_{4}$ at an applied pressure of $p_{c} approx 8$ GPa. We show that the present ac magnetic susceptibility data support earlier resistivity data. The Verwey temperature scales with pressure $T_{V}sim (1-p/p_{c})^{ u}$, with $ usim 1/3$. The resistivity data shows a temperature dependence $rho(T)=rho_{0}+AT^{n}$, with $nsimeq 3$ above and 2.5 at the critical pressure, respectively. This difference in $n$ with pressure is a sign of critical behavior at $p_{c}$. The magnetic susceptibility is smooth near the critical pressure, both at the Verwey transition and near the ferroelectric anomaly. A comparison with the critical behavior observed in the Mott-Hubbard and related systems is made.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا