Do you want to publish a course? Click here

Visual Social Relationship Recognition

247   0   0.0 ( 0 )
 Added by Junnan Li Mr
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Social relationships form the basis of social structure of humans. Developing computational models to understand social relationships from visual data is essential for building intelligent machines that can better interact with humans in a social environment. In this work, we study the problem of visual social relationship recognition in images. We propose a Dual-Glance model for social relationship recognition, where the first glance fixates at the person of interest and the second glance deploys attention mechanism to exploit contextual cues. To enable this study, we curated a large scale People in Social Context (PISC) dataset, which comprises of 23,311 images and 79,244 person pairs with annotated social relationships. Since visually identifying social relationship bears certain degree of uncertainty, we further propose an Adaptive Focal Loss to leverage the ambiguous annotations for more effective learning. We conduct extensive experiments to quantitatively and qualitatively demonstrate the efficacy of our proposed method, which yields state-of-the-art performance on social relationship recognition.



rate research

Read More

Several approaches have been proposed in recent literature to alleviate the long-tail problem, mainly in object classification tasks. In this paper, we make the first large-scale study concerning the task of Long-Tail Visual Relationship Recognition (LTVRR). LTVRR aims at improving the learning of structured visual relationships that come from the long-tail (e.g., rabbit grazing on grass). In this setup, the subject, relation, and object classes each follow a long-tail distribution. To begin our study and make a future benchmark for the community, we introduce two LTVRR-related benchmarks, dubbed VG8K-LT and GQA-LT, built upon the widely used Visual Genome and GQA datasets. We use these benchmarks to study the performance of several state-of-the-art long-tail models on the LTVRR setup. Lastly, we propose a visiolinguistic hubless (VilHub) loss and a Mixup augmentation technique adapted to LTVRR setup, dubbed as RelMix. Both VilHub and RelMix can be easily integrated on top of existing models and despite being simple, our results show that they can remarkably improve the performance, especially on tail classes. Benchmarks, code, and models have been made available at: https://github.com/Vision-CAIR/LTVRR.
Visual 2.5D perception involves understanding the semantics and geometry of a scene through reasoning about object relationships with respect to the viewer in an environment. However, existing works in visual recognition primarily focus on the semantics. To bridge this gap, we study 2.5D visual relationship detection (2.5VRD), in which the goal is to jointly detect objects and predict their relative depth and occlusion relationships. Unlike general VRD, 2.5VRD is egocentric, using the cameras viewpoint as a common reference for all 2.5D relationships. Unlike depth estimation, 2.5VRD is object-centric and not only focuses on depth. To enable progress on this task, we create a new dataset consisting of 220k human-annotated 2.5D relationships among 512K objects from 11K images. We analyze this dataset and conduct extensive experiments including benchmarking multiple state-of-the-art VRD models on this task. Our results show that existing models largely rely on semantic cues and simple heuristics to solve 2.5VRD, motivating further research on models for 2.5D perception. The new dataset is available at https://github.com/google-research-datasets/2.5vrd.
Large scale visual understanding is challenging, as it requires a model to handle the widely-spread and imbalanced distribution of <subject, relation, object> triples. In real-world scenarios with large numbers of objects and relations, some are seen very commonly while others are barely seen. We develop a new relationship detection model that embeds objects and relations into two vector spaces where both discriminative capability and semantic affinity are preserved. We learn both a visual and a semantic module that map features from the two modalities into a shared space, where matched pairs of features have to discriminate against those unmatched, but also maintain close distances to semantically similar ones. Benefiting from that, our model can achieve superior performance even when the visual entity categories scale up to more than 80,000, with extremely skewed class distribution. We demonstrate the efficacy of our model on a large and imbalanced benchmark based of Visual Genome that comprises 53,000+ objects and 29,000+ relations, a scale at which no previous work has ever been evaluated at. We show superiority of our model over carefully designed baselines on the original Visual Genome dataset with 80,000+ categories. We also show state-of-the-art performance on the VRD dataset and the scene graph dataset which is a subset of Visual Genome with 200 categories.
Passive visual systems typically fail to recognize objects in the amodal setting where they are heavily occluded. In contrast, humans and other embodied agents have the ability to move in the environment, and actively control the viewing angle to better understand object shapes and semantics. In this work, we introduce the task of Embodied Visual Recognition (EVR): An agent is instantiated in a 3D environment close to an occluded target object, and is free to move in the environment to perform object classification, amodal object localization, and amodal object segmentation. To address this, we develop a new model called Embodied Mask R-CNN, for agents to learn to move strategically to improve their visual recognition abilities. We conduct experiments using the House3D environment. Experimental results show that: 1) agents with embodiment (movement) achieve better visual recognition performance than passive ones; 2) in order to improve visual recognition abilities, agents can learn strategical moving paths that are different from shortest paths.
A visual relationship denotes a relationship between two objects in an image, which can be represented as a triplet of (subject; predicate; object). Visual relationship detection is crucial for scene understanding in images. Existing visual relationship detection datasets only contain true relationships that correctly describe the content in an image. However, distinguishing false visual relationships from true ones is also crucial for image understanding and grounded natural language processing. In this paper, we construct a visual relationship authenticity dataset, where both true and false relationships among all objects appeared in the captions in the Flickr30k entities image caption dataset are annotated. The dataset is available at https://github.com/codecreator2053/VR_ClassifiedDataset. We hope that this dataset can promote the study on both vision and language understanding.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا