No Arabic abstract
We numerically study the non-local transport signature in Weyl semimetal as a test for interconnectedness of the surface states, using a recursive Greens function method. We drive a current using two leads connected on the same surface (top surface) and apply a magnetic field throughout the system, perpendicular to the surface. We find that this results in a current flowing on the other surface in the direction opposite to the direction of the current on the top surface and we comment on the viability of observing such an effect in experiment. The recursive Greens function method we employ is exact and provides us with the Greens functions of the two surfaces as well as their connecting elements, which can be applied also for other numerical simulations where the effect of surface to surface transport is important.
We analyze the structure of the surface states and Fermi arcs of Weyl semimetals as a function of the boundary conditions parameterizing the Hamiltonian self-adjoint extensions of a minimal model with two Weyl points. These boundary conditions determine both the pseudospin polarization of the system on the surface and the shape of the associated Fermi arcs. We analytically derive the expectation values of the density profile of the surface current, we evaluate the anomalous Hall conductivity as a function of temperature and chemical potential and we discuss the surface current correlation functions and their contribution to the thermal noise. Based on a lattice variant of the model, we numerically study the surface states at zero temperature and we show that their polarization and, consequently, their transport properties, can be varied by suitable Zeeman terms localized on the surface. We also provide an estimate of the bulk conductance of the system based on the Landauer-Buttiker approach. Finally, we analyze the surface anomalous thermal Hall conductivity and we show that the boundary properties lead to a correction of the expected universal thermal Hall conductivity, thus violating the Wiedemann-Franz law.
Weyl semimetals are characterized by unconventional electromagnetic response. We present analytical expressions for all components of the frequency- and wave-vector-dependent charge-spin linear-response tensor of Weyl fermions. The spin-momentum locking of the Weyl Hamiltonian leads to a coupling between charge and longitudinal spin fluctuations, while transverse spin fluctuations remain decoupled from the charge. A real Weyl semimetal with multiple Weyl nodes can show this charge-spin coupling in equilibrium if its crystal symmetry is sufficiently low. All Weyl semimetals are expected to show this coupling if they are driven into a non-equilibrium stationary state with different occupations of Weyl nodes, for example by exploiting the chiral anomaly. Based on the response tensor, we investigate the low-energy collective excitations of interacting Weyl fermions. For a local Hubbard interaction, the charge-spin coupling leads to a dramatic change of the zero-sound dispersion: its velocity becomes independent of the interaction strength and the chemical potential and is given solely by the Fermi velocity. In the presence of long-range Coulomb interactions, the coupling transforms the plasmon modes into spin plasmons. For real Weyl semimetals with multiple Weyl nodes, the collective modes are strongly affected by the presence of parallel static electric and magnetic fields, due to the chiral anomaly. In particular, the zero-sound frequency at fixed momentum and the spin content of the spin plasmons go through cusp singularities as the chemical potential of one of the Weyl cones is tuned through the Weyl node. We discuss possible experiments that could provide smoking-gun evidence for Weyl physics.
The study of charge-density wave (CDW) distortions in Weyl semimetals has recently returned to the forefront, inspired by experimental interest in materials such as (TaSe4)2I. However, the interplay between collective phonon excitations and charge transport in Weyl-CDW systems has not been systematically studied. In this paper, we examine the longitudinal electromagnetic response due to collective modes in a Weyl semimetal gapped by a quasi one-dimensional charge-density wave order, using both continuum and lattice regularized models. We systematically compute the contributions of the collective modes to the linear and nonlinear optical conductivity of our models, both with and without tilting of the Weyl cones. We discover that, unlike in a single-band CDW, the gapless CDW collective mode does not contribute to the conductivity unless the Weyl cones are tilted. Going further, we show that the lowest nontrivial collective mode contribution to charge transport with untilted Weyl cones comes in the third-order conductivity, and is mediated by the gapped amplitude mode. We show that this leads to a sharply peaked third harmonic response at frequencies below the single-particle energy gap. We discuss the implications of our findings for transport experiments in Weyl-CDW systems.
We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, the NHHOWSMs exhibit various configurations of surface Fermi Arcs (FAs) and Exceptional Fermi Rings (EFRs), providing a setup to investigate them on an equal footing. The EFRs only appear in the region between 2nd-order WNs. We also discover Weyl nodes originating from non-Hermicity, called non-Hermitian Weyl nodes (NHWNs). Remarkably, we find T-NHHOWSMs which host only 2nd-order NHWNs, having both surface and hinge FAs protected by the quantized biorthogonal Chern number and quadrupole moment, respectively. We call this intrinsically non-Hermitian phase exceptional HOWSM. In contrast to ordinary WNs, the NHWNs can instantly deform to line nodes, forming a monopole comet. The NHWNs also show exceptional tilt-rigidity, which is a strong resistance towards titling due to attachment to exceptional structures. This phenomenon can be a promising experimental knob. Finally, we reveal the exceptional stability of FAs called exceptional helicity. Surface FAs having opposite chirality can live on the same surface without gapping out each other due to the complex nature of the spectrum. Our work motivates an immediate experimental realization of NHHOWSMs.
Within a Kubo formalism, we study dc transport and ac optical properties of 3D Dirac and Weyl semimetals. Emphasis is placed on the approach to charge neutrality and on the differences between Dirac and Weyl materials. At charge neutrality, the zero-temperature limit of the dc conductivity is not universal and also depends on the residual scattering model employed. However, the Lorenz number L retains its usual value L_0. With increasing temperature, the Wiedemann-Franz law is violated. At high temperatures, L exhibits a new plateau at a value dependent on the details of the scattering rate. Such details can also appear in the optical conductivity, both in the Drude response and interband background. In the clean limit, the interband background is linear in photon energy and always extrapolates to the origin. This background can be shifted to the right through the introduction of a massless gap. In this case, the extrapolation can cut the axis at a finite photon energy as is observed in some experiments. It is also of interest to differentiate between the two types of Weyl semimetals: those with broken time-reversal symmetry and those with broken spatial-inversion symmetry. We show that, while the former will follow the same behaviour as the 3D Dirac semimetals, for the zero magnetic field properties discussed here, the latter type will show a double step in the optical conductivity at finite doping and a single absorption edge at charge neutrality. The Drude conductivity is always finite in this case, even at charge neutrality.