Do you want to publish a course? Click here

Linear Power Grid State Estimation with Modeling Uncertainties

139   0   0.0 ( 0 )
 Added by Martin Wagner
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recent advances in power system State Estimation (SE) have included equivalent circuit models for representing measurement data that allows incorporation of both PMU and RTU measurements within the state estimator. In this paper, we introduce a probabilistic framework with a new RTU model that renders the complete SE problem linear while not affecting its accuracy. It is demonstrated that the probabilistic state of a system can be efficiently and accurately estimated not only with the uncertainties from the measurement data, but also while including variations from transmission network models. To demonstrate accuracy and scalability we present probabilistic state estimation results for the 82k test case that represents the transmission level grid of the entire USA. It is shown that the estimated state distributions include the true grid state, while their mean exactly corresponds to the estimated deterministic state obtained from the nonlinear state estimator.



rate research

Read More

Power system dynamic state estimation (DSE) remains an active research area. This is driven by the absence of accurate models, the increasing availability of fast-sampled, time-synchronized measurements, and the advances in the capability, scalability, and affordability of computing and communications. This paper discusses the advantages of DSE as compared to static state estimation, and the implementation differences between the two, including the measurement configuration, modeling framework and support software features. The important roles of DSE are discussed from modeling, monitoring and operation aspects for todays synchronous machine dominated systems and the future power electronics-interfaced generation systems. Several examples are presented to demonstrate the benefits of DSE on enhancing the operational robustness and resilience of 21st century power system through time critical applications. Future research directions are identified and discussed, paving the way for developing the next generation of energy management systems.
An equivalent circuit formulation for power system analysis was demonstrated to improve robustness of Power Flow and enable more generalized modeling, including that for RTUs (Remote Terminal Units) and PMUs (Phasor Measurement Units). These measurement device models, together with an adjoint circuit based optimization framework, enable an alternative formulation to Power System State Estimation (SE) that can be solved within the equivalent circuit formulation. In this paper, we utilize a linear RTU model to create a fully linear SE algorithm that includes PMU and RTU measurements to enable a probabilistic approach to SE. Results demonstrate that this is a practical approach that is well suited for real-world applications.
68 - Benjamin Donnot 2019
We propose a novel neural network embedding approach to model power transmission grids, in which high voltage lines are disconnected and reconnected with one-another from time to time, either accidentally or willfully. We call our architeture LEAP net, for Latent Encoding of Atypical Perturbation. Our method implements a form of transfer learning, permitting to train on a few source domains, then generalize to new target domains, without learning on any example of that domain. We evaluate the viability of this technique to rapidly assess cu-rative actions that human operators take in emergency situations, using real historical data, from the French high voltage power grid.
Power system state estimation is heavily subjected to measurement error, which comes from the noise of measuring instruments, communication noise, and some unclear randomness. Traditional weighted least square (WLS), as the most universal state estimation method, attempts to minimize the residual between measurements and the estimation of measured variables, but it is unable to handle the measurement error. To solve this problem, based on random matrix theory, this paper proposes a data-driven approach to clean measurement error in matrix-level. Our method significantly reduces the negative effect of measurement error, and conducts a two-stage state estimation scheme combined with WLS. In this method, a Hermitian matrix is constructed to establish an invertible relationship between the eigenvalues of measurements and their covariance matrix. Random matrix tools, combined with an optimization scheme, are used to clean measurement error by shrinking the eigenvalues of the covariance matrix. With great robustness and generality, our approach is particularly suitable for large interconnected power grids. Our method has been numerically evaluated using different testing systems, multiple models of measured noise and matrix size ratios.
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely model-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا