No Arabic abstract
In this paper, we propose a novel heart segmentation pipeline Combining Faster R-CNN and U-net Network (CFUN). Due to Faster R-CNNs precise localization ability and U-nets powerful segmentation ability, CFUN needs only one-step detection and segmentation inference to get the whole heart segmentation result, obtaining good results with significantly reduced computational cost. Besides, CFUN adopts a new loss function based on edge information named 3D Edge-loss as an auxiliary loss to accelerate the convergence of training and improve the segmentation results. Extensive experiments on the public dataset show that CFUN exhibits competitive segmentation performance in a sharply reduced inference time. Our source code and the model are publicly available at https://github.com/Wuziyi616/CFUN.
Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labor, time and reproducibility. While deep learning based methods serve good baselines in 3D image segmentation tasks, small applicable patch size limits effective receptive field and degrades segmentation performance. In addition, Regions of interest (RoIs) localization from large whole volume 3D images serves as a preceding operation that brings about multiple benefits in terms of speed, target completeness, reduction of false positives. Distinct from sliding window or non-joint localization-segmentation based models, we propose a novel multitask framework referred to as 3D RoI-aware U-Net (3D RU-Net), for RoI localization and in-region segmentation where the two tasks share one backbone encoder network. With the region proposals from the encoder, we crop multi-level RoI in-region features from the encoder to form a GPU memory-efficient decoder for detailpreserving segmentation and therefore enlarged applicable volume size and effective receptive field. To effectively train the model, we designed a Dice formulated loss function for the global-to-local multi-task learning procedure. Based on the efficiency gains, we went on to ensemble models with different receptive fields to achieve even higher performance costing minor extra computational expensiveness. Extensive experiments were conducted on 64 cancerous cases with a four-fold cross-validation, and the results showed significant superiority in terms of accuracy and efficiency over conventional frameworks. In conclusion, the proposed method has a huge potential for extension to other 3D object segmentation tasks from medical images due to its inherent generalizability. The code for the proposed method is publicly available.
The location of broken insulators in aerial images is a challenging task. This paper, focusing on the self-blast glass insulator, proposes a deep learning solution. We address the broken insulators location problem as a low signal-noise-ratio image location framework with two modules: 1) object detection based on Fast R-CNN, and 2) classification of pixels based on U-net. A diverse aerial image set of some grid in China is tested to validated the proposed approach. Furthermore, a comparison is made among different methods and the result shows that our approach is accurate and real-time.
Many cultures around the world believe that palm reading can be used to predict the future life of a person. Palmistry uses features of the hand such as palm lines, hand shape, or fingertip position. However, the research on palm-line detection is still scarce, many of them applied traditional image processing techniques. In most real-world scenarios, images usually are not in well-conditioned, causing these methods to severely under-perform. In this paper, we propose an algorithm to extract principle palm lines from an image of a persons hand. Our method applies deep learning networks (DNNs) to improve performance. Another challenge of this problem is the lack of training data. To deal with this issue, we handcrafted a dataset from scratch. From this dataset, we compare the performance of readily available methods with ours. Furthermore, based on the UNet segmentation neural network architecture and the knowledge of attention mechanism, we propose a highly efficient architecture to detect palm-lines. We proposed the Context Fusion Module to capture the most important context feature, which aims to improve segmentation accuracy. The experimental results show that it outperforms the other methods with the highest F1 Score about 99.42% and mIoU is 0.584 for the same dataset.
Detecting pedestrian has been arguably addressed as a special topic beyond general object detection. Although recent deep learning object detectors such as Fast/Faster R-CNN [1, 2] have shown excellent performance for general object detection, they have limited success for detecting pedestrian, and previous leading pedestrian detectors were in general hybrid methods combining hand-crafted and deep convolutional features. In this paper, we investigate issues involving Faster R-CNN [2] for pedestrian detection. We discover that the Region Proposal Network (RPN) in Faster R-CNN indeed performs well as a stand-alone pedestrian detector, but surprisingly, the downstream classifier degrades the results. We argue that two reasons account for the unsatisfactory accuracy: (i) insufficient resolution of feature maps for handling small instances, and (ii) lack of any bootstrapping strategy for mining hard negative examples. Driven by these observations, we propose a very simple but effective baseline for pedestrian detection, using an RPN followed by boosted forests on shared, high-resolution convolutional feature maps. We comprehensively evaluate this method on several benchmarks (Caltech, INRIA, ETH, and KITTI), presenting competitive accuracy and good speed. Code will be made publicly available.
In recent years, computer-aided diagnosis has become an increasingly popular topic. Methods based on convolutional neural networks have achieved good performance in medical image segmentation and classification. Due to the limitations of the convolution operation, the long-term spatial features are often not accurately obtained. Hence, we propose a TransClaw U-Net network structure, which combines the convolution operation with the transformer operation in the encoding part. The convolution part is applied for extracting the shallow spatial features to facilitate the recovery of the image resolution after upsampling. The transformer part is used to encode the patches, and the self-attention mechanism is used to obtain global information between sequences. The decoding part retains the bottom upsampling structure for better detail segmentation performance. The experimental results on Synapse Multi-organ Segmentation Datasets show that the performance of TransClaw U-Net is better than other network structures. The ablation experiments also prove the generalization performance of TransClaw U-Net.