Do you want to publish a course? Click here

Anomalously low metallicity regions in MaNGA star-forming galaxies: Accretion Caught in Action?

71   0   0.0 ( 0 )
 Added by Hsiang-Chih Hwang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We use data from 1222 late-type star-forming galaxies in the SDSS IV MaNGA survey to identify regions in which the gas-phase metallicity is anomalously-low compared to expectations from the tight empirical relation between metallicity and stellar surface mass-density at a given stellar mass. We find anomalously low metallicity (ALM) gas in 10% of the star-forming spaxels, and in 25% of the galaxies in the sample. The incidence rate of ALM gas increases strongly with both global and local measures of the specific star-formation rate, and is higher in lower mass galaxies and in the outer regions of galaxies. The incidence rate is also significantly higher in morphologically disturbed galaxies. We estimate that the lifetimes of the ALM regions are a few hundred Myr. We argue that the ALM gas has been delivered to its present location by a combination of interactions, mergers, and accretion from the halo, and that this infusion of gas stimulates star-formation. Given the estimated lifetime and duty cycle of such events, we estimate that the time-averaged accretion rate of ALM gas is similar to the star-formation rate in late type galaxies over the mass-range M$_* sim10^9$ to 10$^{10}$ M$_{odot}$.



rate research

Read More

While all models for the evolution of galaxies require the accretion of gas to sustain their growth via on-going star formation, it has proven difficult to directly detect this inflowing material. In this paper we use data of nearby star-forming galaxies in the SDSS IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey to search for evidence of accretion imprinted in the chemical composition of the interstellar medium. We measure both the O/H and N/O abundance ratios in regions previously identified as having anomalously low values of O/H. We show that the unusual locations of these regions in the N/O vs. O/H plane indicate that they have been created through the mixing of disk gas having higher metallicity with accreted gas having lower metallicity. Taken together with previous analysis on these anomalously low-metallicity regions, these results imply that accretion of metal-poor gas can probably sustain star formation in present-day late-type galaxies.
We consider the circumnuclear regions of MaNGA galaxies. The spectra are classified as AGN-like, HII-region-like (or SF-like), and intermediate (INT) spectra according to their positions on the BPT diagram. There are the following four configurations of the radiation distributions in the circumnuclear regions: 1) AGN+INT, the innermost region of the AGN-like radiation is surrounded by a ring of radiation of the intermediate type; 2) INT, the central area of radiation of the intermediate type; 3) SF+INT, the inner region of the HII-region-like radiation is surrounded by a ring of radiation of the intermediate type; and 4) SF, the HII-region-like radiation only. The LINERS of configurations 1 and 2 are examined. The spaxel spectra of the LINERs form a sequences on the BPT diagram. The line ratios change smoothly with radius, from AGN-like at the center to HII-region-like at larger distances. This is in agreement with the paradigm that the LINERs are excited by AGN activity. The AGN and INT radiation in the circumnuclear region is accompanied by an enhanced gas velocity dispersion, s_g. The radius of the area of the AGN and INT radiation is similar to the radius of the area with enhanced s_g, and the central s_g,c correlates with the luminosity of the AGN+INT area. We assume that the gas velocity dispersion can serve as an indicator of the AGN activity. The values of s_g,c for the SF-type centers partly overlap with those of the AGN-type centers. We find that there is a demarcation line between the positions of the AGN-type and SF-type objects on the s_g,c - central Halpha surface brightness diagram.
494 - Jianhui Lian 2019
Within the standard model of hierarchical galaxy formation in a {Lambda}CDM Universe, the environment of galaxies is expected to play a key role in driving galaxy formation and evolution. In this paper we investigate whether and how the gas metallicity and the star formation surface density ({Sigma}_SFR) depend on galaxy environment. To this end we analyse a sample of 1162 local, star-forming galaxies from the galaxy survey Mapping Nearby Galaxies at APO (MaNGA). Generally, both parameters do not show any significant dependence on environment. However, in agreement with previous studies, we find that low-mass satellite galaxies are an exception to this rule. The gas metallicity in these objects increases while their {Sigma}SFR decreases slightly with environmental density. The present analysis of MaNGA data allows us to extend this to spatially resolved properties. Our study reveals that the gas metallicity gradients of low-mass satellites flatten and their {Sigma}SFR gradients steepen with increasing environmental density. By extensively exploring a chemical evolution model, we identify two scenarios that are able to explain this pattern: metal-enriched gas accretion or pristine gas inflow with varying accretion timescales. The latter scenario better matches the observed {Sigma}SFR gradients, and is therefore our preferred solution. In this model, a shorter gas accretion timescale at larger radii is required. This suggests that outside-in quenching governs the star formation processes of low-mass satellite galaxies in dense environments.
We present a sample of low-redshift (z<0.133) candidates for extremely low-metallicity star-forming galaxies with oxygen abundances 12+logO/H<7.4 selected from the Data Release 14 (DR14) of the Sloan Digital Sky Survey (SDSS). Three methods are used to derive their oxygen abundances. Among these methods two are based on strong [OII]3727, [OIII]4959, and [OIII]5007 emission lines, which we call strong-line and semi-empirical methods. These were applied for all galaxies. We have developed one of these methods, the strong-line method, in this paper. This method is specifically focused on the accurate determination of metallicity in extremely low-metallicity galaxies and may not be used at higher metallicities with12+logO/H>7.5. The third, the direct Te method, was applied for galaxies with detected [OIII]4363 emission lines. All three methods give consistent abundances and can be used in combination or separately for selection of lowest-metallicity candidates. However, the strong-line method is preferable for spectra with a poorly detected or undetected [OIII]4363 emission line. In total, our list of selected candidates for extremely low-metallicity galaxies includes 66 objects.
We investigate radiation hardness within a representative sample of 67 nearby (0.02 $lesssim $z$ lesssim$0.06) star-forming (SF) galaxies using the integral field spectroscopic data from the MaNGA survey. The softness parameter $eta$ = $frac{O^{+}/O^{2+}}{S^{+}/S^{2+}}$ is sensitive to the spectral energy distribution of the ionizing radiation. We study $eta$ via the observable quantity $etaprime$ (=$frac{[OII]/[OIII]}{[SII][SIII]}$) We analyse the relation between radiation hardness (traced by $eta$ and $etaprime$) and diagnostics sensitive to gas-phase metallicity, electron temperature, density, ionization parameter, effective temperature and age of ionizing populations. It is evident that low metallicity is accompanied by low log $etaprime$, i.e. hard radiation field. No direct relation is found between radiation hardness and other nebular parameters though such relations can not be ruled out. We provide empirical relations between log $rmeta$ and strong emission line ratios N$_2$, O$_3$N$_2$ and Ar$_3$O$_3$ which will allow future studies of radiation hardness in SF galaxies where weak auroral lines are undetected. We compare the variation of [O III]/[O II] and [S III]/[S II] for MaNGA data with SF galaxies and H II regions within spiral galaxies from literature, and find that the similarity and differences between different data set is mainly due to the metallicity. We find that predictions from photoionizaion models considering young and evolved stellar populations as ionizing sources in good agreement with the MaNGA data. This comparison also suggests that hard radiation fields from hot and old low-mass stars within or around SF regions might significantly contribute to the observed $eta$ values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا