Do you want to publish a course? Click here

Deep Neural Networks for Choice Analysis: Extracting Complete Economic Information for Interpretation

410   0   0.0 ( 0 )
 Added by Shenhao Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

While deep neural networks (DNNs) have been increasingly applied to choice analysis showing high predictive power, it is unclear to what extent researchers can interpret economic information from DNNs. This paper demonstrates that DNNs can provide economic information as complete as classical discrete choice models (DCMs). The economic information includes choice predictions, choice probabilities, market shares, substitution patterns of alternatives, social welfare, probability derivatives, elasticities, marginal rates of substitution (MRS), and heterogeneous values of time (VOT). Unlike DCMs, DNNs can automatically learn the utility function and reveal behavioral patterns that are not prespecified by domain experts. However, the economic information obtained from DNNs can be unreliable because of the three challenges associated with the automatic learning capacity: high sensitivity to hyperparameters, model non-identification, and local irregularity. To demonstrate the strength and challenges of DNNs, we estimated the DNNs using a stated preference survey, extracted the full list of economic information from the DNNs, and compared them with those from the DCMs. We found that the economic information either aggregated over trainings or population is more reliable than the disaggregate information of the individual observations or trainings, and that even simple hyperparameter searching can significantly improve the reliability of the economic information extracted from the DNNs. Future studies should investigate other regularizations and DNN architectures, better optimization algorithms, and robust DNN training methods to address DNNs three challenges, to provide more reliable economic information from DNN-based choice models.



rate research

Read More

We investigate the effectiveness of different machine learning methodologies in predicting economic cycles. We identify the deep learning methodology of Bi-LSTM with Autoencoder as the most accurate model to forecast the beginning and end of economic recessions in the U.S. We adopt commonly-available macro and market-condition features to compare the ability of different machine learning models to generate good predictions both in-sample and out-of-sample. The proposed model is flexible and dynamic when both predictive variables and model coefficients vary over time. It provided good out-of-sample predictions for the past two recessions and early warning about the COVID-19 recession.
While researchers increasingly use deep neural networks (DNN) to analyze individual choices, overfitting and interpretability issues remain as obstacles in theory and practice. By using statistical learning theory, this study presents a framework to examine the tradeoff between estimation and approximation errors, and between prediction and interpretation losses. It operationalizes the DNN interpretability in the choice analysis by formulating the metrics of interpretation loss as the difference between true and estimated choice probability functions. This study also uses the statistical learning theory to upper bound the estimation error of both prediction and interpretation losses in DNN, shedding light on why DNN does not have the overfitting issue. Three scenarios are then simulated to compare DNN to binary logit model (BNL). We found that DNN outperforms BNL in terms of both prediction and interpretation for most of the scenarios, and larger sample size unleashes the predictive power of DNN but not BNL. DNN is also used to analyze the choice of trip purposes and travel modes based on the National Household Travel Survey 2017 (NHTS2017) dataset. These experiments indicate that DNN can be used for choice analysis beyond the current practice of demand forecasting because it has the inherent utility interpretation, the flexibility of accommodating various information formats, and the power of automatically learning utility specification. DNN is both more predictive and interpretable than BNL unless the modelers have complete knowledge about the choice task, and the sample size is small. Overall, statistical learning theory can be a foundation for future studies in the non-asymptotic data regime or using high-dimensional statistical models in choice analysis, and the experiments show the feasibility and effectiveness of DNN for its wide applications to policy and behavioral analysis.
It is an enduring question how to combine revealed preference (RP) and stated preference (SP) data to analyze travel behavior. This study presents a framework of multitask learning deep neural networks (MTLDNNs) for this question, and demonstrates that MTLDNNs are more generic than the traditional nested logit (NL) method, due to its capacity of automatic feature learning and soft constraints. About 1,500 MTLDNN models are designed and applied to the survey data that was collected in Singapore and focused on the RP of four current travel modes and the SP with autonomous vehicles (AV) as the one new travel mode in addition to those in RP. We found that MTLDNNs consistently outperform six benchmark models and particularly the classical NL models by about 5% prediction accuracy in both RP and SP datasets. This performance improvement can be mainly attributed to the soft constraints specific to MTLDNNs, including its innovative architectural design and regularization methods, but not much to the generic capacity of automatic feature learning endowed by a standard feedforward DNN architecture. Besides prediction, MTLDNNs are also interpretable. The empirical results show that AV is mainly the substitute of driving and AV alternative-specific variables are more important than the socio-economic variables in determining AV adoption. Overall, this study introduces a new MTLDNN framework to combine RP and SP, and demonstrates its theoretical flexibility and empirical power for prediction and interpretation. Future studies can design new MTLDNN architectures to reflect the speciality of RP and SP and extend this work to other behavioral analysis.
It is commonly believed that the hidden layers of deep neural networks (DNNs) attempt to extract informative features for learning tasks. In this paper, we formalize this intuition by showing that the features extracted by DNN coincide with the result of an optimization problem, which we call the `universal feature selection problem, in a local analysis regime. We interpret the weights training in DNN as the projection of feature functions between feature spaces, specified by the network structure. Our formulation has direct operational meaning in terms of the performance for inference tasks, and gives interpretations to the internal computation results of DNNs. Results of numerical experiments are provided to support the analysis.
Various measures have been taken in different countries to mitigate the Covid-19 epidemic. But, throughout the world, many citizens dont understand well how these measures are taken and even question the decisions taken by their government. Should the measures be more (or less) restrictive? Are they taken for a too long (or too short) period of time? To provide some quantitative elements of response to these questions, we consider the well-known SEIR model for the Covid-19 epidemic propagation and propose a pragmatic model of the government decision-making operation. Although simple and obviously improvable, the proposed model allows us to study the tradeoff between health and economic aspects in a pragmatic and insightful way. Assuming a given number of phases for the epidemic and a desired tradeoff between health and economic aspects, it is then possible to determine the optimal duration of each phase and the optimal severity level for each of them. The numerical analysis is performed for the case of France but the adopted approach can be applied to any country. One of the takeaway messages of this analysis is that being able to implement the optimal 4-phase epidemic management strategy in France would have led to 1.05 million infected people and a GDP loss of 231 billion euro instead of 6.88 million of infected and a loss of 241 billion euro. This indicates that, seen from the proposed model perspective, the effectively implemented epidemic management strategy is good economically, whereas substantial improvements might have been obtained in terms of health impact. Our analysis indicates that the lockdown/severe phase should have been more severe but shorter, and the adjustment phase occurred earlier. Due to the natural tendency of people to deviate from the official rules, updating measures every month over the whole epidemic episode seems to be more appropriate.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا