Do you want to publish a course? Click here

Beliefs in Decision-Making Cascades

70   0   0.0 ( 0 )
 Added by Daewon Seo
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

This work explores a social learning problem with agents having nonidentical noise variances and mismatched beliefs. We consider an $N$-agent binary hypothesis test in which each agent sequentially makes a decision based not only on a private observation, but also on preceding agents decisions. In addition, the agents have their own beliefs instead of the true prior, and have nonidentical noise variances in the private signal. We focus on the Bayes risk of the last agent, where preceding agents are selfish. We first derive the optimal decision rule by recursive belief update and conclude, counterintuitively, that beliefs deviating from the true prior could be optimal in this setting. The effect of nonidentical noise levels in the two-agent case is also considered and analytical properties of the optimal belief curves are given. Next, we consider a predecessor selection problem wherein the subsequent agent of a certain belief chooses a predecessor from a set of candidates with varying beliefs. We characterize the decision region for choosing such a predecessor and argue that a subsequent agent with beliefs varying from the true prior often ends up selecting a suboptimal predecessor, indicating the need for a social planner. Lastly, we discuss an augmented intelligence design problem that uses a model of human behavior from cumulative prospect theory and investigate its near-optimality and suboptimality.



rate research

Read More

Regret minimization has proved to be a versatile tool for tree-form sequential decision making and extensive-form games. In large two-player zero-sum imperfect-information games, modern extensions of counterfactual regret minimization (CFR) are currently the practical state of the art for computing a Nash equilibrium. Most regret-minimization algorithms for tree-form sequential decision making, including CFR, require (i) an exact model of the players decision nodes, observation nodes, and how they are linked, and (ii) full knowledge, at all times t, about the payoffs -- even in parts of the decision space that are not encountered at time t. Recently, there has been growing interest towards relaxing some of those restrictions and making regret minimization applicable to settings for which reinforcement learning methods have traditionally been used -- for example, those in which only black-box access to the environment is available. We give the first, to our knowledge, regret-minimization algorithm that guarantees sublinear regret with high probability even when requirement (i) -- and thus also (ii) -- is dropped. We formalize an online learning setting in which the strategy space is not known to the agent and gets revealed incrementally whenever the agent encounters new decision points. We give an efficient algorithm that achieves $O(T^{3/4})$ regret with high probability for that setting, even when the agent faces an adversarial environment. Our experiments show it significantly outperforms the prior algorithms for the problem, which do not have such guarantees. It can be used in any application for which regret minimization is useful: approximating Nash equilibrium or quantal response equilibrium, approximating coarse correlated equilibrium in multi-player games, learning a best response, learning safe opponent exploitation, and online play against an unknown opponent/environment.
94 - Renzhe Xu , Peng Cui , Kun Kuang 2020
Nowadays fairness issues have raised great concerns in decision-making systems. Various fairness notions have been proposed to measure the degree to which an algorithm is unfair. In practice, there frequently exist a certain set of variables we term as fair variables, which are pre-decision covariates such as users choices. The effects of fair variables are irrelevant in assessing the fairness of the decision support algorithm. We thus define conditional fairness as a more sound fairness metric by conditioning on the fairness variables. Given different prior knowledge of fair variables, we demonstrate that traditional fairness notations, such as demographic parity and equalized odds, are special cases of our conditional fairness notations. Moreover, we propose a Derivable Conditional Fairness Regularizer (DCFR), which can be integrated into any decision-making model, to track the trade-off between precision and fairness of algorithmic decision making. Specifically, an adversarial representation based conditional independence loss is proposed in our DCFR to measure the degree of unfairness. With extensive experiments on three real-world datasets, we demonstrate the advantages of our conditional fairness notation and DCFR.
239 - Wenjun Zeng , Yi Liu 2021
In membership/subscriber acquisition and retention, we sometimes need to recommend marketing content for multiple pages in sequence. Different from general sequential decision making process, the use cases have a simpler flow where customers per seeing recommended content on each page can only return feedback as moving forward in the process or dropping from it until a termination state. We refer to this type of problems as sequential decision making in linear--flow. We propose to formulate the problem as an MDP with Bandits where Bandits are employed to model the transition probability matrix. At recommendation time, we use Thompson sampling (TS) to sample the transition probabilities and allocate the best series of actions with analytical solution through exact dynamic programming. The way that we formulate the problem allows us to leverage TSs efficiency in balancing exploration and exploitation and Bandits convenience in modeling actions incompatibility. In the simulation study, we observe the proposed MDP with Bandits algorithm outperforms Q-learning with $epsilon$-greedy and decreasing $epsilon$, independent Bandits, and interaction Bandits. We also find the proposed algorithms performance is the most robust to changes in the across-page interdependence strength.
The long-term impact of algorithmic decision making is shaped by the dynamics between the deployed decision rule and individuals response. Focusing on settings where each individual desires a positive classification---including many important applications such as hiring and school admissions, we study a dynamic learning setting where individuals invest in a positive outcome based on their groups expected gain and the decision rule is updated to maximize institutional benefit. By characterizing the equilibria of these dynamics, we show that natural challenges to desirable long-term outcomes arise due to heterogeneity across groups and the lack of realizability. We consider two interventions, decoupling the decision rule by group and subsidizing the cost of investment. We show that decoupling achieves optimal outcomes in the realizable case but has discrepant effects that may depend on the initial conditions otherwise. In contrast, subsidizing the cost of investment is shown to create better equilibria for the disadvantaged group even in the absence of realizability.
307 - Ran Tian , Sisi Li , Nan Li 2018
In this paper, we propose a decision making algorithm for autonomous vehicle control at a roundabout intersection. The algorithm is based on a game-theoretic model representing the interactions between the ego vehicle and an opponent vehicle, and adapts to an online estimated driver type of the opponent vehicle. Simulation results are reported.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا