Do you want to publish a course? Click here

Isotope Harvesting at FRIB: Additional opportunities for scientific discovery

67   0   0.0 ( 0 )
 Added by Gregory W Severin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Facility for Rare Isotope Beams (FRIB) at Michigan State University provides a unique opportunity to access some of the nations most specialized scientific resources: radioisotopes. An excess of useful radioisotopes will be formed as FRIB fulfills its basic science mission of providing rare isotope beams. In order for the FRIB beams to reach high-purity, many of the isotopes are discarded and go unused. If harvested, the unused isotopes could enable cutting-edge research for diverse applications ranging from medical therapy and diagnosis to nuclear security. Given that FRIB will have the capability to create about 80 percent of all possible atomic nuclei, harvesting at FRIB will provide a fast path for access to a vast array of isotopes of interest in basic and applied science investigations. To fully realize this opportunity, infrastructure investment is required to enable harvesting and purification of otherwise unused isotopes. An investment in isotope harvesting at FRIB will provide the nation with a powerful resource for development of crucial isotope applications.



rate research

Read More

To improve the ability of particle identification of the RIBLL2 separator at the HIRFL-CSR complex, a new high-performance detector for measuring fragment starting time and position at the F1 dispersive plane has been constructed and installed, and a method for achieving precise Br{ho} determination has been developed using the experimentally derived ion-optical transfer matrix elements from the measured position and ToF information. Using the high-performance detectors and the precise Br{ho} determination method, the fragments produced by the fragmentation of 78Kr at 300 MeV/nucleon were identified clearly at the RIBLL2-ETF under full momentum acceptance. The atomic number Z resolution of {sigma}Z~0.19 and the mass-to-charge ratio A/Q resolution of {sigma}A/Q~5.8e-3 were obtained for the 75As33+ fragment. This great improvement will increase the collection efficiency of exotic nuclei, extend the range of nuclei of interest from the A<40 mass region up to the A~80 mass region, and promote the development of radioactive nuclear beam experiments at the RIBLL2 separator.
The TexAT (Texas Active Target) detector is a new active-target time projection chamber (TPC) that was built at the Cyclotron Institute Texas A$&$M University. The detector is designed to be of general use for nuclear structure and nuclear astrophysics experiments with rare isotope beams. TexAT combines a highly segmented Time Projection Chamber (TPC) with two layers of solid state detectors. It provides high efficiency and flexibility for experiments with low intensity exotic beams, allowing for the 3D track reconstruction of the incoming and outgoing particles involved in nuclear reactions and decays.
A system of two microchannel-plate detectors has been successfully implemented for tracking projectile-fragmentation beams. The detectors provide interaction positions, angles, and arrival times of ions at the reaction target. The current design is an adaptation of an assembly used for low-energy beams ($sim$1.4 MeV/nucleon). In order to improve resolution in tracking high-energy heavy-ion beams, the magnetic field strength between the secondary-electron accelerating foil and the microchannel plate had to be increased substantially. Results from an experiment using a 37-MeV/nucleon ${}^{56}$Ni beam show that the tracking system can achieve sub-nanosecond timing resolution and a position resolution of $sim$1 mm for beam intensities up to $5times10^{5}$ pps.
294 - N. Fukuda , T. Kubo , T. Ohnishi 2013
We have developed a method for achieving excellent resolving power in in-flight particle identification of radioactive isotope (RI) beams at the BigRIPS fragment separator at the RIKEN Nishina Center RI Beam Factory (RIBF). In the BigRIPS separator, RI beams are identified by their atomic number Z and mass-to-charge ratio A/Q which are deduced from the measurements of time of flight (TOF), magnetic rigidity (Brho) and energy loss (delta-E), and delivered as tagged RI beams to a variety of experiments including secondary reaction measurements. High A/Q resolution is an essential requirement for this scheme, because the charge state Q of RI beams has to be identified at RIBF energies such as 200-300 MeV/nucleon. By precisely determining the Brho and TOF values, we have achieved relative A/Q resolution as good as 0.034% (root-mean-square value). The achieved A/Q resolution is high enough to clearly identify the charge state Q in the Z versus A/Q particle identification plot, where fully-stripped and hydrogen-like peaks are very closely located. The precise Brho determination is achieved by refined particle trajectory reconstruction, while a slew correction is performed to precisely determine the TOF value. Furthermore background events are thoroughly removed to improve reliability of the particle identification. In the present paper we present the details of the particle identification scheme in the BigRIPS separator. The isotope separation in the BigRIPS separator is also briefly introduced.
Waveform feature is one of the requirements for the FRIB LLRF controllers. It is desired that the LLRF con-trollers store the internal data (e.g. the amplitude and phase information of forward/reverse/cavity signals) for at least one second of sampled data at the RF feedback control loop rate (around 1.25 MHz). One use case is to freeze the data buffer when an interlock event happens and read out the fast data to diagnose the problem. An-other use case is to monitor a set of signals at a decimated rate (user settable) while the data buffer is still running, like using an oscilloscope. The detailed implementation will be discussed in the paper, including writing data into the DDR memory through the native interface, reading out the data through the bus interface, etc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا