Do you want to publish a course? Click here

Guided Graph Spectral Embedding: Application to the C. elegans Connectome

47   0   0.0 ( 0 )
 Added by Miljan Petrovi\\'c
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Graph spectral analysis can yield meaningful embeddings of graphs by providing insight into distributed features not directly accessible in nodal domain. Recent efforts in graph signal processing have proposed new decompositions-e.g., based on wavelets and Slepians-that can be applied to filter signals defined on the graph. In this work, we take inspiration from these constructions to define a new guided spectral embedding that combines maximizing energy concentration with minimizing modified embedded distance for a given importance weighting of the nodes. We show these optimization goals are intrinsically opposite, leading to a well-defined and stable spectral decomposition. The importance weighting allows to put the focus on particular nodes and tune the trade-off between global and local effects. Following the derivation of our new optimization criterion and its linear approximation, we exemplify the methodology on the C. elegans structural connectome. The results of our analyses confirm known observations on the nematodes neural network in terms of functionality and importance of cells. Compared to Laplacian embedding, the guided approach, focused on a certain class of cells (sensory, inter- and motoneurons), provides more biological insights, such as the distinction between somatic positions of cells, and their involvement in low or high order processing functions.



rate research

Read More

Graph representation learning has achieved great success in many areas, including e-commerce, chemistry, biology, etc. However, the fundamental problem of choosing the appropriate dimension of node embedding for a given graph still remains unsolved. The commonly used strategies for Node Embedding Dimension Selection (NEDS) based on grid search or empirical knowledge suffer from heavy computation and poor model performance. In this paper, we revisit NEDS from the perspective of minimum entropy principle. Subsequently, we propose a novel Minimum Graph Entropy (MinGE) algorithm for NEDS with graph data. To be specific, MinGE considers both feature entropy and structure entropy on graphs, which are carefully designed according to the characteristics of the rich information in them. The feature entropy, which assumes the embeddings of adjacent nodes to be more similar, connects node features and link topology on graphs. The structure entropy takes the normalized degree as basic unit to further measure the higher-order structure of graphs. Based on them, we design MinGE to directly calculate the ideal node embedding dimension for any graph. Finally, comprehensive experiments with popular Graph Neural Networks (GNNs) on benchmark datasets demonstrate the effectiveness and generalizability of our proposed MinGE.
The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly show has been extensively studied, it is unclear whether connection specificity of such networks can already be fully explained by the modularity alone. To answer this question, we study two networks, the neuronal network of C. elegans and the fibre tract network of human brains yielded through diffusion spectrum imaging (DSI). We compare them to their respective benchmark networks with varying modularities, which are generated by link swapping to have desired modularity values but otherwise maximally random. We find several network properties that are specific to the neural networks and cannot be fully explained by the modularity alone. First, the clustering coefficient and the characteristic path length of C. elegans and human connectomes are both higher than those of the benchmark networks with similar modularity. High clustering coefficient indicates efficient local information distribution and high characteristic path length suggests reduced global integration. Second, the total wiring length is smaller than for the alternative configurations with similar modularity. This is due to lower dispersion of connections, which means each neuron in C. elegans connectome or each region of interest (ROI) in human connectome reaches fewer ganglia or cortical areas, respectively. Third, both neural networks show lower algorithmic entropy compared to the alternative arrangements. This implies that fewer rules are needed to encode for the organisation of neural systems.
Brain Electroencephalography (EEG) classification is widely applied to analyze cerebral diseases in recent years. Unfortunately, invalid/noisy EEGs degrade the diagnosis performance and most previously developed methods ignore the necessity of EEG selection for classification. To this end, this paper proposes a novel maximum weight clique-based EEG selection approach, named mwcEEGs, to map EEG selection to searching maximum similarity-weighted cliques from an improved Fr{e}chet distance-weighted undirected EEG graph simultaneously considering edge weights and vertex weights. Our mwcEEGs improves the classification performance by selecting intra-clique pairwise similar and inter-clique discriminative EEGs with similarity threshold $delta$. Experimental results demonstrate the algorithm effectiveness compared with the state-of-the-art time series selection algorithms on real-world EEG datasets.
The roundworm C. elegans exhibits robust escape behavior in response to rapidly rising temperature. The behavior lasts for a few seconds, shows history dependence, involves both sensory and motor systems, and is too complicated to model mechanistically using currently available knowledge. Instead we model the process phenomenologically, and we use the Sir Isaac dynamical inference platform to infer the model in a fully automated fashion directly from experimental data. The inferred model requires incorporation of an unobserved dynamical variable, and is biologically interpretable. The model makes accurate predictions about the dynamics of the worm behavior, and it can be used to characterize the functional logic of the dynamical system underlying the escape response. This work illustrates the power of modern artificial intelligence to aid in discovery of accurate and interpretable models of complex natural systems.
Graph is a natural representation of data for a variety of real-word applications, such as knowledge graph mining, social network analysis and biological network comparison. For these applications, graph embedding is crucial as it provides vector representations of the graph. One limitation of existing graph embedding methods is that their embedding optimization procedures are disconnected from the target application. In this paper, we propose a novel approach, namely Customized Graph Embedding (CGE) to tackle this problem. The CGE algorithm learns customized vector representations of graph nodes by differentiating the importance of distinct graph paths automatically for a specific application. Extensive experiments were carried out on a diverse set of node classification datasets, which demonstrate strong performances of CGE and provide deep insights into the model.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا