Do you want to publish a course? Click here

The Diverse Science Return from a Wide-Area Survey of the Galactic Plane

85   0   0.0 ( 0 )
 Added by Rachel Street
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The overwhelming majority of objects visible to LSST lie within the Galactic Plane. Though many previous surveys have avoided this region for fear of stellar crowding, LSSTs spatial resolution combined with its state-of-the-art Difference Image Analysis mean that it can conduct a high cadence survey of most of the Galaxy for the first time. Here we outline the many areas of science that would greatly benefit from an LSST survey that included the Galactic Plane, Magellanic Clouds and Bulge at a cadence of 2-3 d. Particular highlights include measuring the mass spectrum of black holes, and mapping the population of exoplanets in the Galaxy in relation to variations in star forming environments. But the same survey data will provide a goldmine for a wide range of science, and we explore possible survey strategies which maximize the scientific return for a number of fields including young stellar objects, cataclysmic variables and Neptune Trojans.

rate research

Read More

NASAs WFIRST mission will perform a wide-field, NIR survey of the Galactic Bulge to search for exoplanets via the microlensing techniques. As the mission is due to launch in the mid-2020s, around half-way through the LSST Main Survey, we have a unique opportunity to explore synergistic science from two landmark programs. LSST can survey the entire footprint of the WFIRST microlensing survey in a single Deep Drilling Field. Here we explore the great scientific potential of this proposal and recommend the most effective observing strategies.
The Wide Area VISTA Extra-galactic Survey (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ~2million galaxies to $r_{rm AB} < 22$ mag. WAVES consists of two interlocking galaxy surveys (WAVES-Deep and WAVES-Wide), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at $zsim1$. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models.
Comets hold answers to mysteries of the Solar System by recording presolar history, the initial states of planet formation and prebiotic organics and volatiles to the early Earth. Analysis of returned samples from a comet nucleus will provide unparalleled knowledge about the Solar System starting materials and how they came together to form planets and give rise to life: 1. How did comets form? 2. Is comet material primordial, or has it undergone a complex alteration history? 3. Does aqueous alteration occur in comets? 4. What is the composition of cometary organics? 5. Did comets supply a substantial fraction of Earths volatiles? 6. Did cometary organics contribute to the homochirality in life on Earth? 7. How do complex organic molecules form and evolve in interstellar, nebular, and planetary environments? 8. What can comets tell us about the mixing of materials in the protosolar nebula?
134 - Michael Zemcov 2019
Astrophysical measurements away from the 1 AU orbit of Earth can enable several astrophysical science cases that are challenging or impossible to perform from Earthbound platforms, including: building a detailed understanding of the extragalactic background light throughout the electromagnetic spectrum; measurements of the properties of dust and ice in the inner and outer solar system; determinations of the mass of planets and stellar remnants far from luminous stars using gravitational microlensing; and stable time-domain astronomy. Though potentially transformative for astrophysics, opportunities to fly instrumentation capable of these measurements are rare, and a mission to the distant solar system that includes instrumentation expressly designed to perform astrophysical science, or even one primarily for a different purpose but capable of precise astronomical investigation, has not yet been flown. In this White Paper, we describe the science motivations for this kind of measurement, and advocate for future flight opportunities that permit intersectional collaboration and cooperation to make these science investigations a reality.
The Zwicky Transient Facility (ZTF) is currently surveying the entire northern sky, including dense Galactic plane fields. Here, we present preliminary results of the search for gravitational microlensing events in the ZTF data collected from the beginning of the survey (March 20, 2018) through June 30, 2019.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا