No Arabic abstract
Drones, unmanned aerial vehicles (UAVs), or unmanned aerial systems (UAS) are expected to be an important component of 5G/beyond 5G (B5G) communications. This includes their use within cellular architectures (5G UAVs), in which they can facilitate both wireless broadcast and point-to-point transmissions, usually using small UAS (sUAS). Allowing UAS to operate within airspace along with commercial, cargo, and other piloted aircraft will likely require dedicated and protected aviation spectrum at least in the near term, while regulatory authorities adapt to their use. The command and control (C2), or control and non-payload communications (CNPC) link provides safety critical information for the control of the UAV both in terrestrial-based line of sight (LOS) conditions and in satellite communication links for so-called beyond LOS (BLOS) conditions. In this paper, we provide an overview of these CNPC links as they may be used in 5G and satellite systems by describing basic concepts and challenges. We review new entrant technologies that might be used for UAV C2 as well as for payload communication, such as millimeter wave (mmWave) systems, and also review navigation and surveillance challenges. A brief discussion of UAV-to-UAV communication and hardware issues are also provided.
Urban air mobility (UAM) is a concept for creating an airborne transportation system that operates in urban settings with an on-board pilot and/or remote pilot in command (RPIC), or with a fully autonomous architecture. Although the passenger traffic will be mostly in and near urban environments, UAM is also being considered for air cargo, perhaps between cities. Such capability is pushing the current communication, navigation and surveillance (CNS) / air traffic management (ATM) systems that were not designed to support these types of aviation scenarios. The UAM aircraft will be operating in a congested environment, where CNS and ATM systems need to provide integrity, robustness, security, and very high availability for safety of UAM operations while evolving. As UAM is under research by academia and government agencies, the industry is driving technology towards aircraft prototypes. Critical UAM requirements are derived from command and control (C2) (particularly for RPIC scenario), data connectivity for passengers and flight systems, unmanned aircraft systems (UAS) to UAS communication to avoid collision, and data exchange for positioning and surveillance. In this paper, we study connectivity challenges and present requirements towards a robust UAM architecture through its concept of operations. In addition, we review the existing/potential CNS technologies towards UAM, i.e., 3rd generation partnership project (3GPP) fifth generation (5G) new radio (NR), navigation detect & avoid (DAA), and satellite systems and present conclusions on a future road-map for UAM CNS architecture.
Unmanned aerial vehicles (UAVs) are emerging as enablers for supporting many applications and services, such as precision agriculture, search and rescue, temporary network deployment or coverage extension, and security. UAVs are being considered for integration into emerging 5G networks as aerial users or network support nodes. We propose to leverage UAVs in 5G to assist in the prevention, detection, and recovery of attacks on 5G networks. Specifically, we consider jamming, spoofing, eavesdropping and the corresponding mitigation mechanisms that are enabled by the versatility of UAVs. We introduce the hot zone, safe zone and UAV-based secondary authorization entity, among others, to increase the resilience and confidentiality of 5G radio access networks and services. We present simulation results and discuss open issues and research directions, including the need for experimental evaluation and a research platform for prototyping and testing the proposed technologies.
We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate.
The rapid development of communication technologies in the past decades has provided immense vertical opportunities for individuals and enterprises. However, conventional terrestrial cellular networks have unfortunately neglected the huge geographical digital divide, since high bandwidth wireless coverage is concentrated to urban areas. To meet the goal of ``connecting the unconnected, integrating low Earth orbit (LEO) satellites with the terrestrial cellular networks has been widely considered as a promising solution. In this article, we first introduce the development roadmap of LEO satellite constellations (SatCons), including early attempts in LEO satellites with the emerging LEO constellations. Further, we discuss the unique opportunities of employing LEO SatCons for the delivery of integrating 5G networks. Specifically, we present their key performance indicators, which offer important guidelines for the design of associated enabling techniques, and then discuss the potential impact of integrating LEO SatCons with typical 5G use cases, where we engrave our vision of various vertical domains reshaped by LEO SatCons. Technical challenges are finally provided to specify future research directions.
In this paper, we propose a joint indoor localization and navigation algorithm to enable a swarm of unmanned aerial vehicles (UAVs) to deploy in a specific spatial formation in indoor environments. In the envisioned scenario, we consider a static user acting as a central unit whose main task is to acquire all the UAV measurements carrying position-dependent information and to estimate the UAV positions when there is no existing infrastructure for positioning. Subsequently, the user exploits the estimated positions as inputs for the navigation control with the aim of deploying the UAVs in a desired formation in space (formation shaping). The user plans the trajectory of each UAV in real time, guaranteeing a safe navigation in the presence of obstacles. The proposed algorithm guides the UAVs to their desired final locations with good accuracy.