Do you want to publish a course? Click here

UAV-Based in-band Integrated Access and Backhaul for 5G Communications

148   0   0.0 ( 0 )
 Added by Abdurrahman Fouda
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We introduce the concept of using unmanned aerial vehicles (UAVs) as drone base stations for in-band Integrated Access and Backhaul (IB-IAB) scenarios for 5G networks. We first present a system model for forward link transmissions in an IB-IAB multi-tier drone cellular network. We then investigate the key challenges of this scenario and propose a framework that utilizes the flying capabilities of the UAVs as the main degree of freedom to find the optimal precoder design for the backhaul links, user-base station association, UAV 3D hovering locations, and power allocations. We discuss how the proposed algorithm can be utilized to optimize the network performance in both large and small scales. Finally, we use an exhaustive search-based solution to demonstrate the performance gains that can be achieved from the presented algorithm in terms of the received signal to interference plus noise ratio (SINR) and overall network sum-rate.



rate research

Read More

An integrated access and backhaul (IAB) network architecture can enable flexible and fast deployment of next-generation cellular networks. However, mutual interference between access and backhaul links, small inter-site distance and spatial dynamics of user distribution pose major challenges in the practical deployment of IAB networks. To tackle these problems, we leverage the flying capabilities of unmanned aerial vehicles (UAVs) as hovering IAB-nodes and propose an interference management algorithm to maximize the overall sum rate of the IAB network. In particular, we jointly optimize the user and base station associations, the downlink power allocations for access and backhaul transmissions, and the spatial configurations of UAVs. We consider two spatial configuration modes of UAVs: distributed UAVs and drone antenna array (DAA), and show how they are intertwined with the spatial distribution of ground users. Our numerical results show that the proposed algorithm achieves an average of $2.9times$ and $6.7times$ gains in the received downlink signal-to-interference-plus-noise ratio (SINR) and overall network sum rate, respectively. Finally, the numerical results reveal that UAVs cannot only be used for coverage improvement but also for capacity boosting in IAB cellular networks.
The use of Millimeter-wave (mmWave) spectrum in cellular communications has recently attracted growing interest to support the expected massive increase in traffic demands. However, the high path-loss at mmWave frequencies poses severe challenges. In this paper, we analyze the potential coverage gains of using unmanned aerial vehicles (UAVs), as hovering relays, in integrated access and backhaul (IAB) mmWave cellular scenarios. Specifically, we utilize the WinProp software package, which employs ray tracing methodology, to study the propagation characteristics of outdoor mmWave channels at 30 and 60 GHz frequency bands in a Manhattan-like environment. In doing so, we propose the implementation of amplify-and-forward (AF) and decode-and-forward (DF) relaying mechanisms in the WinProp software. We show how the 3D deployment of UAVs can be defined based on the coverage ray tracing maps at access and backhaul links. Furthermore, we propose an adaptive UAV transmission power for the AF relaying. We demonstrate, with the aid of ray tracing simulations, the performance gains of the proposed relaying modes in terms of downlink coverage, and the received signal to interference and noise ratio (SINR).
This article proposes a novel framework for unmaned aerial vehicle (UAV) networks with massive access capability supported by non-orthogonal multiple access (NOMA). In order to better understand NOMA enabled UAV networks, three case studies are carried out. We first provide performance evaluation of NOMA enabled UAV networks by adopting stochastic geometry to model the positions of UAVs and ground users. Then we investigate the joint trajectory design and power allocation for static NOMA users based on a simplified two-dimensional (2D) model that UAV is flying around at fixed height. As a further advance, we demonstrate the UAV placement issue with the aid of machine learning techniques when the ground users are roaming and the UAVs are capable of adjusting their positions in three-dimensions (3D) accordingly. With these case studies, we can comprehensively understand the UAV systems from fundamental theory to practical implementation.
The next generations of mobile networks will be deployed as ultra-dense networks, to match the demand for increased capacity and the challenges that communications in the higher portion of the spectrum (i.e., the mmWave band) introduce. Ultra-dense networks, however, require pervasive, high-capacity backhaul solutions, and deploying fiber optic to all base stations is generally considered to be too expensive for network operators. The 3rd Generation Partnership Project (3GPP) has thus introduced Integrated Access and Backhaul (IAB), a wireless backhaul solution in which the access and backhaul links share the same hardware, protocol stack, and also spectrum. The multiplexing of different links in the same frequency bands, however, introduces interference and capacity sharing issues, thus calling for the introduction of advanced scheduling and coordination schemes. This paper proposes a semi-centralized resource allocation scheme for IAB networks, designed to be flexible, with low complexity, and compliant with the 3GPP IAB specifications. We develop a version of the Maximum Weighted Matching (MWM) problem that can be applied on a spanning tree that represents the IAB network and whose complexity is linear in the number of IAB-nodes. The proposed solution is compared with state-of-the-art distributed approaches through end-to-end, full-stack system-level simulations with a 3GPP-compliant channel model, protocol stack, and a diverse set of user applications. The results show how that our scheme can increase the throughput of cell-edge users up to 5 times, while decreasing the overall network congestion with an end-to-end delay reduction of up to 25 times.
Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral efficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا