Do you want to publish a course? Click here

Innermost stable circular orbits of neutron stars in dilatonic-Einstein-Gauss-Bonnet theory

83   0   0.0 ( 0 )
 Added by Burkhard Kleihaus
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The innermost stable circular orbits (ISCOs) around rapidly rotating neutron stars are studied in dilatonic Einstein-Gauss-Bonnet theory. Universal relations for properly scaled ISCO properties are extended from General Relativity to dilatonic Einstein-Gauss-Bonnet theory and additional relations are obtained.



rate research

Read More

We study a hairy black hole solution in the dilatonic Einstein-Gauss-Bonnet theory of gravitation, in which the Gauss-Bonnet term is non-minimally coupled to the dilaton field. Hairy black holes with spherical symmetry seem to be easily constructed with a positive Gauss-Bonnet coefficient $alpha$ within the coupling function, $f(phi) = alpha e^{gamma phi}$, in an asymptotically flat spacetime, i.e., no-hair theorem seems to be easily evaded in this theory. Therefore, it is natural to ask whether this construction can be expanded into the case with the negative coefficient $alpha$. In this paper, we present numerically the dilaton black hole solutions with a negative $alpha$ and analyze the properties of GB term through the aspects of the black hole mass. We construct the new integral constraint allowing the existence of the hairy solutions with the negative $alpha$. Through this procedure, we expand the evasion of the no-hair theorem for hairy black hole solutions.
We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find four critical values as the boundaries. When the separation is relatively large, the sequence on the symmetric plane bifurcates, and furthermore, they extend to each innermost stable circular orbit in the vicinity of each black hole. In a certain separation range, the sequence on the symmetric plane separates into two parts. On the basis of this phenomenon, we discuss the formation of double accretion disks with a common center. Finally, we clarify the dependence of the radii of marginally stable circular orbits and innermost stable circular orbits on the separation parameter. We find a discontinuous transition of the innermost stable circular orbit radius. We also find the separation range at which the radius of the innermost stable circular orbit can be smaller than that of the stable circular photon orbit.
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.
107 - M. Bousder , M. Bennai 2021
We study the charge of the 4D-Einstein-Gauss-Bonnet black hole by a negative charge and a positive charge of a particle-antiparticle pair on the horizons r- and r+, respectively. We show that there are two types of the Schwarzschild black hole. We show also that the Einstein-Gauss-Bonnet black hole charge has quantified values. We obtain the Hawking-Bekenstein formula with two logarithmic corrections, the second correction depends on the cosmological constant and the black hole charge. Finally, we study the thermodynamics of the EGB-AdS black hole.
We study the properties of compact objects in a particular 4D Horndeski theory originating from higher dimensional Einstein-Gauss-Bonnet gravity. Remarkably, an exact vacuum solution is known. This compact object differs from general relativity mostly in the strong field regime. We discuss some properties of black holes in this framework and investigate in detail the properties of neutron stars, both static and in slow rotation. We find that for relatively modest deviations from general relativity, the secondary object in GW190814 is compatible with being a slowly-rotating neutron star, without resorting to very stiff or exotic equations of state. For larger deviations from general relativity, the equilibrium sequence of neutron stars matches asymptotically to the black hole limit, closing the mass gap between neutron stars and black holes of same radius, but the stability of equilibrium solutions has yet to be determined. In light of our results and of current observational constraints, we discuss specific constraints on the coupling constant that parametrizes deviations from general relativity in this theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا