No Arabic abstract
The superconducting current has been observed in mesa-heterostructures Nb/Au/Sr2IrO4/YBa2Cu3Ox with Sr2IrO4 interlayer thickness d=5 and 7 nm and in-plane sizes L=10-50 mcm. A strontium iridate, Sr2IrO4, is known as a canted antiferromagnetic insulator at low temperatures and characterized also by the strong spin-orbit interaction due to the impact of the IrO2 plane. The superconducting critical current density jC =0.3 A/cm^2 for the case d=7 nm was observed at T=4.2K. The temperature dependences of the superconducting critical current IC(T) and the voltage position on the I-V curve of the gap singularity of the Nb electrode show an increase with decreasing temperature and corresponds to the expected BCS behavior of the Nb energy gap. The critical current is very sensitive to the influence of an external magnetic field and reduces twice at an external magnetic field (H=0.2 Oe for L=40-50 mcm) comparable with the earth magnetic field; The magnetic field dependence IC(H) at low H was narrower than the Fraunhofer pattern about 1.5 times. Both the integer and fractional Shapiro steps at voltages V=(m/n)(h/2e)fe were observed under microwave radiation at frequencies fe=38 GHz and fe=50 GHz. Fractional Shapiro steps (m/n=1/2, 3/2) may point on the presence of the second harmonic in the superconducting current-phase relation.
We present a microscopic theory of the superconducting proximity effect in a semiconducting thin film with spin-orbit interaction ($N_{SO}$) in an external magnetic field. We demonstrate that an effective 1D Hamiltonian which describes induced superconductivity in $N_{SO}$ in contact with a usual $s$-wave superconductor possesses not only spin-singlet induced superconducting order parameter term, as commonly adopted, but spin triplet order parameter term also. Using this new effective Hamiltonian we confirm previous results for a normal current across contacts of $N_{SO}$ with a normal metal and for a Josephson current with the same $N_{SO}$ with induced superconductivity, obtained previously in the framework of the phenomenological Hamiltonian without spin-triplet terms. However, a calculated current-phase relation across the transparent contact between $N_{SO}$ with induced superconductivity in magnetic field and usual $s$-wave superconductor differs significantly from previous results. We suggest the experiment which can confirm our theoretical predictions.
We report on the electronic transport and the impact of spin-filtering in mesa-structures made of epitaxial thin films of cuprate superconductor YBa2Cu3Ox(YBCO) and the manganite LaMnO3 (LMO) interlayer with the Au/Nb counterelectrode. Ferromagnetic resonance measurements of heterostructure Au/LMO/YBCO shows ferromagnetic state at temperatures below 150 K as in the case of reference LMO film grown on the neodymium gallate substrate. The heights of the tunneling barrier evaluated from resistive characteristics of mesa-structures at different thickness of interlayer showed an exponential decrease from 30 mV down to 5 mV with the increase of manganite interlayer thickness. Temperature dependence of the conductivity of mesa-structures could be described taking into account the d-wave superconductivity in YBCO and a spin filtering of the electron transport. Spin filtering is supported also by measurements of magneto-resistance and the high sensitivity of mesa-structure conductivity to weak magnetic fields.
The complex investigation of dc transport and magnetic properties of the epitaxial manganite/iridate heterostructure was carried out by mean of X-ray (XRD), dc resistance measurements, ferromagnetic resonance (FMR) and polarized neutron reflectivity (PNR). Epitaxial growth of the heterostructure proceeded according to the cube-to-cube mechanism with the small lattice turn. The dc measurement indicates the presence of a conduction channel at the iridate/manganite interface due to the charge leakage from iridate that makes it hole doped, while the manganite side becomes electron doped. This is confirmed by the first principles calculations based on density functional theory [Sayantika Bhowal, and Sashi Satpathy AIP Conference Proceedings 2005, 020007 (2018)] that show the charge transfer at the interface from the half-filled spin-orbit entangled Jeff = 1/2 state of the iridate to the empty e states of manganite. The neutron scattering data show the turn of magnetization vector of the heterostructure (mainly manganite) on 26 degree closer to the external field with reducing temperature down to 10K. Additional ferromagnetic state appearing at T<100K indicate on emergence of ferromagnetism in the thin (10 nm) paramagnetic SIO film close to the interface. We have measured the dc voltage aroused on the SIO film caused by spin pumping and the anisotropic magnetoresistance in the heterostructure.
The perovskite SrIrO3 is an exotic narrow-band metal owing to a confluence of the strengths of the spin-orbit coupling (SOC) and the electron-electron correlations. It has been proposed that topological and magnetic insulating phases can be achieved by tuning the SOC, Hubbard interactions, and/or lattice symmetry. Here, we report that the substitution of nonmagnetic, isovalent Sn4+ for Ir4+ in the SrIr1-xSnxO3 perovskites synthesized under high pressure leads to a metal-insulator transition to an antiferromagnetic (AF) phase at TN > 225 K. The continuous change of the cell volume as detected by x-ray diffraction and the lamda-shape transition of the specific heat on cooling through TN demonstrate that the metal-insulator transition is of second-order. Neutron powder diffraction results indicate that the Sn substitution enlarges an octahedral-site distortion that reduces the SOC relative to the spin-spin exchange interaction and results in the type-G AF spin ordering below TN. Measurement of high-temperature magnetic susceptibility shows the evolution of magnetic coupling in the paramagnetic phase typical of weak itinerant-electron magnetism in the Sn-substituted samples. A reduced structural symmetry in the magnetically ordered phase leads to an electron gap opening at the Brillouin zone boundary below TN in the same way as proposed by Slater.
Josephson current between two one-dimensional nanowires with proximity induced $p$-wave superconducting pairing is calculated in the presence of Rashba spin-orbit interaction, in-plane and normal magnetic fields. We show that Andreev retro-tunneling is realized by means of three channels. The main contribution to the Josephson current gives a scattering in a conventional particle-hole channel, when an electron-like quasiparticle reflects to a hole-like quasiparticle with opposite spin yielding a current which depends only on the order parameters phase differences $varphi$ and oscillates with $4pi$ period. Second anomalous particle-hole channel, corresponding to the Andreev reflection of an incident electron-like quasiparticle to an hole-like quasiparticle with the same spin orientation, survives only in the presence of the in-plane magnetic field. The contribution of this channel to the Josephson current oscillates with $4pi$ period not only with $varphi$ but also with orientational angle of the in-plane magnetic field $theta$ resulting in a magneto-Josephson effect. Third anomalous particle-particle channel, which represents a reflection of an electron-like (hole-like) quasiparticle to a electron-like (hole-like) quasiparticle with opposite spin-orientation, oscillates only with the in-plane magnetic field orientation angle $theta$. We present a detailed theoretical analysis of both DC and AC Josephson effects in such a system showing contributions from all these channels and discuss experiments which can test our theory.