No Arabic abstract
The versatility of RHIC allowed the PHENIX collaboration to measure low momentum direct photons from small systems, such as p+p, p+A, d+Au at $sqrt{s_{NN}} = $200 GeV as well as from large A+A systems, such as Au+Au and Cu+Cu at 200 GeV and Au+Au at 62.4 GeV and 39 GeV. In these measurements PHENIX has discovered a large excess over the scaled p+p yield of direct photons in A+A collisions, and a non-zero excess over the scaled p+p yield in central p+A collisions. Another PHENIX discovery is that at low-$p_{T}$ the integrated yield of direct photons, $dN_{gamma}/dy$, from large systems follows a universal scaling as a function of the charged-particle multiplicity, $(dN_{ch}/deta)^{alpha}$, with $alpha = 1.25$. The observed scaling properties of direct photons from these systems show that the photon production yield increases faster than the charged-particle multiplicity.
The PHENIX collaboration has measured low momentum direct photon radiation in Au+Au collisions at 200 GeV, 62.4 GeV and 39 GeV, in Cu+Cu at 200 GeV as well as in p+p, p+Au and d+Au at $sqrt{s_{NN}} =$ 200 GeV. In these measurements PHENIX has discovered a large excess over the scaled p+p yield of direct photons in A+A collisions, and a non-zero excess, observed within systematic uncertainties, over the scaled p+p yield in central p+A collisions. Another finding is that at low-$p_{T}$ the integrated yield of direct photons, $dN_{gamma}/dy$, from large systems shows a behavior of universal scaling as a function of the charged-particle multiplicity, $(dN_{ch}/deta)^{alpha}$, with $alpha = 1.25$, which means that the photon production yield increases faster than the charged-particle multiplicity.
The PHENIX experiment at RHIC has measured the centrality dependence of the direct photon yield from Au$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV down to $p_T=0.4$ GeV/$c$. Photons are detected via photon
Most recent PHENIX results on electromagnetic probes are presented including first preliminary results obtained with the Hadron Blind Detector (HBD) on e+e- invariant mass spectra from Au+Au collisions at sqrt(s_NN) = 200 GeV.
The production of the low-mass dielectrons is considered to be a powerful tool to study the properties of the hot and dense matter created in the ultra-relativistic heavy-ion collisions. We present the preliminary results on the first measurements of the low-mass dielectron continuum in Au+Au collisions and the phi meson production measured in Au+Au and d+Au collisions at sqrt{s_NN} = 200 GeV performed by the PHENIX experiment.
We have measured direct photons for $p_T<5~$GeV/$c$ in minimum bias and 0%--40% most central events at midrapidity for Cu$+$Cu collisions at $sqrt{s_{_{NN}}}=200$ GeV. The $e^{+}e^{-}$ contribution from quasi-real direct virtual photons has been determined as an excess over the known hadronic contributions in the $e^{+}e^{-}$ mass distribution. A clear enhancement of photons over the binary scaled $p$$+$$p$ fit is observed for $p_T<4$ GeV/$c$ in Cu$+$Cu data. The $p_T$ spectra are consistent with the Au$+$Au data covering a similar number of participants. The inverse slopes of the exponential fits to the excess after subtraction of the $p$$+$$p$ baseline are 285$pm$53(stat)$pm$57(syst)~MeV/$c$ and 333$pm$72(stat)$pm$45(syst)~MeV/$c$ for minimum bias and 0%--40% most central events, respectively. The rapidity density, $dN/dy$, of photons demonstrates the same power law as a function of $dN_{rm ch}/deta$ observed in Au$+$Au at the same collision energy.