Do you want to publish a course? Click here

Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer

71   0   0.0 ( 0 )
 Added by Qizhong Zhu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Van der Waals heterostructures of 2D materials provide a powerful approach towards engineering various quantum phases of matters. Examples include topological matters such as quantum spin Hall (QSH) insulator, and correlated matters such as exciton superfluid. It can be of great interest to realize these vastly different quantum matters on a common platform, however, their distinct origins tend to restrict them to material systems of incompatible characters. Here we show that heterobilayers of two-dimensional valley semiconductors can be tuned through interlayer bias between an exciton superfluid (ES), a quantum anomalous Hall (QAH) insulator, and a QSH insulator. The tunability between these distinct phases results from the competition of Coulomb interaction with the interlayer quantum tunnelling that has a chiral form in valley semiconductors. Our findings point to exciting opportunities for harnessing both protected topological edge channels and bulk superfluidity in an electrically configurable platform.



rate research

Read More

Due to their unique two-dimensional nature, charge carriers in semiconducting transition metal dichalcogenides (TMDs) exhibit strong unscreened Coulomb interactions and sensitivity to defects and impurities. The versatility of van der Waals layer stacking allows spatially separating electrons and holes between different TMD layers with staggered band structure, yielding interlayer few-body excitonic complexes whose nature is still debated. Here we combine quantum Monte Carlo calculations with spectrally and temporally resolved photoluminescence measurements on a top- and bottom-gated MoSe2/WSe2 heterostructure, and identify the emitters as impurity-bound interlayer excitonic complexes. Using independent electrostatic control of doping and out-of-plane electric field, we demonstrate control of the relative populations of neutral and charged complexes, their emission energies on a scale larger than their linewidth, and an increase of their lifetime into the microsecond regime. This work unveils new physics of confined carriers and is key to the development of novel optoelectronics applications.
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have led to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently-bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of all-2D vdW heterojunctions. Here, we demonstrate, 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over seven orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi-level tuning at the junction opening up possibilities for novel 2D/3D heterojunction device architectures.
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilayer transition metal dichalcogenides by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of excitons and hybrid polaritons with interaction potentials exceeding 410 meV may be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid photon states and their interference. Our work paves the way to a next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.
The properties of van der Waals (vdW) heterostructures are drastically altered by a tunable moire superlattice arising from periodic variations of atomic alignment between the layers. Exciton diffusion represents an important channel of energy transport in semiconducting transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers have suggested that carriers and excitons exhibit long diffusion lengths, a rich variety of scenarios can exist. In a moire crystal with a large supercell size and deep potential, interlayer excitons may be completely localized. As the moire period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion length should be the longest in commensurate heterostructures where the moire superlattice is completely absent. In this study, we experimentally demonstrate that the moire potential impedes interlayer exciton diffusion by comparing a number of WSe2/MoSe2 heterostructures prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles. Our results provide critical guidance to developing twistronic devices that explore the moire superlattice to engineer material properties.
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in $text{MoSe}_{text{2}}$/$text{WSe}_{text{2}}$ twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1$^circ$ to 3.5$^circ$. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moire potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of twistronics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا