Do you want to publish a course? Click here

Foliated Field Theory and String-Membrane-Net Condensation Picture of Fracton Order

122   0   0.0 ( 0 )
 Added by Kevin Slagle
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Foliated fracton order is a qualitatively new kind of phase of matter. It is similar to topological order, but with the fundamental difference that a layered structure, referred to as a foliation, plays an essential role and determines the mobility restrictions of the topological excitations. In this work, we introduce a new kind of field theory to describe these phases: a foliated field theory. We also introduce a new lattice model and string-membrane-net condensation picture of these phases, which is analogous to the string-net condensation picture of topological order.



rate research

Read More

In this work, we show that the checkerboard model exhibits the phenomenon of foliated fracton order. We introduce a renormalization group transformation for the model that utilizes toric code bilayers as an entanglement resource, and show how to extend the model to general three-dimensional manifolds. Furthermore, we use universal properties distilled from the structure of fractional excitations and ground-state entanglement to characterize the foliated fracton phase and find that it is the same as two copies of the X-cube model. Indeed, we demonstrate that the checkerboard model can be transformed into two copies of the X-cube model via an adiabatic deformation.
Based on several previous examples, we summarize explicitly the general procedure to gauge models with subsystem symmetries, which are symmetries with generators that have support within a sub-manifold of the system. The gauging process can be applied to any local quantum model on a lattice that is invariant under the subsystem symmetry. We focus primarily on simple 3D paramagnetic states with planar symmetries. For these systems, the gauged theory may exhibit foliated fracton order and we find that the species of symmetry charges in the paramagnet directly determine the resulting foliated fracton order. Moreover, we find that gauging linear subsystem symmetries in 2D or 3D models results in a self-duality similar to gauging global symmetries in 1D.
We establish the presence of foliated fracton order in the Majorana checkerboard model. In particular, we describe an entanglement renormalization group transformation which utilizes toric code layers as resources of entanglement, and furthermore discuss entanglement signatures and fractional excitations of the model. In fact, we give an exact local unitary equivalence between the Majorana checkerboard model and the semionic X-cube model augmented with decoupled fermionic modes. This mapping demonstrates that the model lies within the X-cube foliated fracton phase.
In the study of three-dimensional gapped models, two-dimensional gapped states should be considered as a free resource. This is the basic idea underlying the notion of `foliated fracton order proposed in Phys. Rev. X 8, 031051 (2018). We have found that many of the known type I fracton models, although they appear very different, have the same foliated fracton order, known as `X-cube order. In this paper, we identify three-dimensional fracton models with different kinds of foliated fracton order. Whereas the X-cube order corresponds to the gauge theory of a simple paramagnet with subsystem planar symmetry, the novel orders correspond to twist
66 - J. Vidal 2018
We consider the string-net model obtained from $SU(2)_2$ fusion rules. These fusion rules are shared by two different sets of anyon theories. In this work, we study the competition between the two corresponding non-Abelian quantum phases in the ladder geometry. A detailed symmetry analysis shows that the nontrivial low-energy sector corresponds to the transverse-field cluster model that displays a critical point described by the $so(2)_1$ conformal field theory. Other sectors are obtained by freezing spins in this model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا