Do you want to publish a course? Click here

Ising versus $SU(2)_2$ string-net ladder

67   0   0.0 ( 0 )
 Added by Julien Vidal
 Publication date 2018
  fields Physics
and research's language is English
 Authors J. Vidal




Ask ChatGPT about the research

We consider the string-net model obtained from $SU(2)_2$ fusion rules. These fusion rules are shared by two different sets of anyon theories. In this work, we study the competition between the two corresponding non-Abelian quantum phases in the ladder geometry. A detailed symmetry analysis shows that the nontrivial low-energy sector corresponds to the transverse-field cluster model that displays a critical point described by the $so(2)_1$ conformal field theory. Other sectors are obtained by freezing spins in this model.



rate research

Read More

We study a string-net ladder in the presence of a string tension. Focusing on the simplest non-Abelian anyon theory with a quantum dimension larger than two, we determine the phase diagram and find a Russian doll spectrum featuring size-independent energy levels as well as highly degenerate zero-energy eigenstates. At the self-dual points, we compute the gap exactly by using a mapping onto the Temperley-Lieb chain. These results are in stark constrast with the ones obtained for Fibonacci or Ising theories.
Foliated fracton order is a qualitatively new kind of phase of matter. It is similar to topological order, but with the fundamental difference that a layered structure, referred to as a foliation, plays an essential role and determines the mobility restrictions of the topological excitations. In this work, we introduce a new kind of field theory to describe these phases: a foliated field theory. We also introduce a new lattice model and string-membrane-net condensation picture of these phases, which is analogous to the string-net condensation picture of topological order.
We revisit a class of non-Hermitian topological models that are Galois conjugates of their Hermitian counter parts. Particularly, these are Galois conjugates of unitary string-net models. We demonstrate these models necessarily have real spectra, and that topological numbers are recovered as matrix elements of operators evaluated in appropriate bi-orthogonal basis, that we conveniently reformulate as a concomitant Hilbert space here. We also compute in the bi-orthogonal basis thetopological entanglement entropy, demonstrating that its real part is related to the quantum dimension of the topological order. While we focus mostly on the Yang-Lee model, the results in the paper apply generally to Galois conjugates.
Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2|2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
We consider the string-net model on the honeycomb lattice for Ising anyons in the presence of a string tension. This competing term induces a nontrivial dynamics of the non-Abelian anyonic quasiparticles and may lead to a breakdown of the topological phase. Using high-order series expansions and exact diagonalizations, we determine the robustness of this doubled Ising phase which is found to be separated from two gapped phases. An effective quantum dimer model emerges in the large tension limit giving rise to two different translation symmetry-broken phases. Consequently, we obtain four transition points, two of which are associated with first-order transitions whereas the two others are found to be continuous and provide examples of recently proposed Bose condensation for anyons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا