Do you want to publish a course? Click here

Quantum criticality on a chiral ladder: an $SU(2)$ iDMRG study

50   0   0.0 ( 0 )
 Added by Philipp Schmoll
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study the ground state properties of a ladder Hamiltonian with chiral $SU(2)$-invariant spin interactions, a possible first step towards the construction of truly two dimensional non-trivial systems with chiral properties starting from quasi-one dimensional ones. Our analysis uses a recent implementation by us of $SU(2)$ symmetry in tensor network algorithms, specifically for infinite Density Matrix Renormalization Group (iDMRG). After a preliminary analysis with Kadanoff coarse-graining and exact diagonalization for a small-size system, we discuss its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field theory, in agreement with our numerical findings. In particular, the scaling of the entanglement entropy as well as finite-entanglement scaling data show that the ground state properties match those of the universality class of a $c = 1$ conformal field theory (CFT) in $(1+1)$ dimensions. We also study the algebraic decay of spin-spin and dimer-dimer correlation functions, as well as the algebraic convergence of the ground state energy with the bond dimension, and the entanglement spectrum of half an infinite chain. Our results for the entanglement spectrum are remarkably similar to those of the spin-$1/2$ Heisenberg chain, which we take as a strong indication that both systems are described by the same CFT at low energies, i.e., an $SU(2)_1$ Wess-Zumino-Witten theory. Moreover, we explain in detail how to construct Matrix Product Operators for $SU(2)$-invariant three-spin interactions, something that had not been addressed with sufficient depth in the literature.



rate research

Read More

Two integrable quantum spin ladder systems will be introduced associated with the fundamental su(2|2) solution of the Yang-Baxter equation. The first model is a generalized quantum Ising system with Ising rung interactions. In the second model the addition of extra interactions allows us to impose Heisenberg rung interactions without violating integrability. The existence of a Bethe ansatz solution for both models allows us to investigate the elementary excitations for antiferromagnetic rung couplings. We find that the first model does not show a gap whilst in the second case there is a gap for all positive values of the rung coupling.
226 - Flavio S. Nogueira 2008
Quantum electrodynamics in 2+1 dimensions is an effective gauge theory for the so called algebraic quantum liquids. A new type of such a liquid, the algebraic charge liquid, has been proposed recently in the context of deconfined quantum critical points [R. K. Kaul {it et al.}, Nature Physics {bf 4}, 28 (2008)]. In this context, we show by using the renormalization group in $d=4-epsilon$ spacetime dimensions, that a deconfined quantum critical point occurs in a SU(2) system provided the number of Dirac fermion species $N_fgeq 4$. The calculations are done in a representation where the Dirac fermions are given by four-component spinors. The critical exponents are calculated for several values of $N_f$. In particular, for $N_f=4$ and $epsilon=1$ ($d=2+1$) the anomalous dimension of the Neel field is given by $eta_N=1/3$, with a correlation length exponent $ u=1/2$. These values change considerably for $N_f>4$. For instance, for $N_f=6$ we find $eta_Napprox 0.75191$ and $ uapprox 0.66009$. We also investigate the effect of chiral symmetry breaking and analyze the scaling behavior of the chiral holon susceptibility, $G_chi(x)equiv<bar psi(x)psi(x)bar psi(0)psi(0)>$.
66 - J. Vidal 2018
We consider the string-net model obtained from $SU(2)_2$ fusion rules. These fusion rules are shared by two different sets of anyon theories. In this work, we study the competition between the two corresponding non-Abelian quantum phases in the ladder geometry. A detailed symmetry analysis shows that the nontrivial low-energy sector corresponds to the transverse-field cluster model that displays a critical point described by the $so(2)_1$ conformal field theory. Other sectors are obtained by freezing spins in this model.
We report on zero-field muon spin rotation, electron spin resonance and polarized Raman scattering measurements of the coupled quantum spin ladder Ba2CuTeO6. Zero-field muon spin rotation and electron spin resonance probes disclose a successive crossover from a paramagnetic through a spin-liquid-like into a magnetically ordered state with decreasing temperature. More significantly, the two-magnon Raman response obeys a T-linear scaling relation in its peak energy, linewidth and intensity. This critical scaling behavior presents an experimental signature of proximity to a quantum critical point from an ordered side in Ba2CuTeO6.
It was proposed in [(https://doi.org/10.1103/PhysRevLett.114.145301){Chen et al., Phys. Rev. Lett. $mathbf{114}$, 145301 (2015)}] that spin-2 chains display an extended critical phase with enhanced SU$(3)$ symmetry. This hypothesis is highly unexpected for a spin-2 system and, as we argue, would imply an unconventional mechanism for symmetry emergence. Yet, the absence of convenient critical points for renormalization group perturbative expansions, allied with the usual difficulty in the convergence of numerical methods in critical or small-gapped phases, renders the verification of this hypothetical SU$(3)$-symmetric phase a non-trivial matter. By tracing parallels with the well-understood phase diagram of spin-1 chains and searching for signatures robust against finite-size effects, we draw criticism on the existence of this phase. We perform non-Abelian density matrix renormalization group studies of multipolar static correlation function, energy spectrum scaling, single-mode approximation, and entanglement spectrum to shed light on the problem. We determine that the hypothetical SU$(3)$ spin-2 phase is, in fact, dominated by ferro-octupolar correlations and also observe a lack of Luttinger-liquid-like behavior in correlation functions that suggests that is perhaps not critical. We further construct an infinite family of spin-$S$ systems with similar ferro-octupolar-dominated quasi-SU$(3)$-like phenomenology; curiously, we note that the spin-3 version of the problem is located in a subspace of exact G$_2$ symmetry, making this a point of interest for search of Fibonacci topological properties in magnetic systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا