Do you want to publish a course? Click here

Accelerating Photovoltaic Materials Development via High-Throughput Experiments and Machine-Learning-Assisted Diagnosis

74   0   0.0 ( 0 )
 Added by Shijing Sun
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Accelerating the experimental cycle for new materials development is vital for addressing the grand energy challenges of the 21st century. We fabricate and characterize 75 unique halide perovskite-inspired solution-based thin-film materials within a two-month period, with 87% exhibiting band gaps between 1.2 eV and 2.4 eV that are of interest for energy-harvesting applications. This increased throughput is enabled by streamlining experimental workflows, developing a set of precursors amenable to high-throughput synthesis, and developing machine-learning assisted diagnosis. We utilize a deep neural network to classify compounds based on experimental X-ray diffraction data into 0D, 2D, and 3D structures more than 10 times faster than human analysis and with 90% accuracy. We validate our methods using lead-halide perovskites and extend the application to novel lead-free compositions. The wider synthesis window and faster cycle of learning enables three noteworthy scientific findings: (1) we realize four inorganic layered perovskites, A3B2Br9 (A = Cs, Rb; B = Bi, Sb) in thin-film form via one-step liquid deposition; (2) we report a multi-site lead-free alloy series that was not previously described in literature, Cs3(Bi1-xSbx)2(I1-xBrx)9; and (3) we reveal the effect on bandgap (reduction to <2 eV) and structure upon simultaneous alloying on the B-site and X-site of Cs3Bi2I9 with Sb and Br. This study demonstrates that combining an accelerated experimental cycle of learning and machine-learning based diagnosis represents an important step toward realizing fully-automated laboratories for materials discovery and development.



rate research

Read More

Combining high-throughput experiments with machine learning allows quick optimization of parameter spaces towards achieving target properties. In this study, we demonstrate that machine learning, combined with multi-labeled datasets, can additionally be used for scientific understanding and hypothesis testing. We introduce an automated flow system with high-throughput drop-casting for thin film preparation, followed by fast characterization of optical and electrical properties, with the capability to complete one cycle of learning of fully labeled ~160 samples in a single day. We combine regio-regular poly-3-hexylthiophene with various carbon nanotubes to achieve electrical conductivities as high as 1200 S/cm. Interestingly, a non-intuitive local optimum emerges when 10% of double-walled carbon nanotubes are added with long single wall carbon nanotubes, where the conductivity is seen to be as high as 700 S/cm, which we subsequently explain with high fidelity optical characterization. Employing dataset resampling strategies and graph-based regressions allows us to account for experimental cost and uncertainty estimation of correlated multi-outputs, and supports the proving of the hypothesis linking charge delocalization to electrical conductivity. We therefore present a robust machine-learning driven high-throughput experimental scheme that can be applied to optimize and understand properties of composites, or hybrid organic-inorganic materials.
Magnetic topological insulators and semi-metals have a variety of properties that make them attractive for applications including spintronics and quantum computation, but very few high-quality candidate materials are known. In this work, we use systematic high-throughput density functional theory calculations to identify magnetic topological materials from 40000 three-dimensional materials in the JARVIS-DFT database (https://jarvis.nist.gov/jarvisdft). First, we screen materials with net magnetic moment > 0.5 {mu}B and spin-orbit spillage > 0.25, resulting in 25 insulating and 564 metallic candidates. The spillage acts as a signature of spin-orbit induced band-inversion. Then, we carry out calculations of Wannier charge centers, Chern numbers, anomalous Hall conductivities, surface bandstructures, and Fermi-surfaces to determine interesting topological characteristics of the screened compounds. We also train machine learning models for predicting the spillage, bandgaps, and magnetic moments of new compounds, to further accelerate the screening process. We experimentally synthesize and characterize a few candidate materials to support our theoretical predictions.
Antisolvent crystallization methods are frequently used to fabricate high-quality perovskite thin films, to produce sizable single crystals, and to synthesize nanoparticles at room temperature. However, a systematic exploration of the effect of specific antisolvents on the intrinsic stability of multicomponent metal halide perovskites has yet to be demonstrated. Here, we develop a high-throughput experimental workflow that incorporates chemical robotic synthesis, automated characterization, and machine learning techniques to explore how the choice of antisolvent affects the intrinsic stability of binary perovskite systems in ambient conditions over time. Different combinations of the endmembers, MAPbI3, MAPbBr3, FAPbI3, FAPbBr3, CsPbI3, and CsPbBr3, are used to synthesize 15 combinatorial libraries, each with 96 unique combinations. In total, roughly 1100 different compositions are synthesized. Each library is fabricated twice using two different antisolvents: toluene and chloroform. Once synthesized, photoluminescence spectroscopy is automatically performed every 5 minutes for approximately 6 hours. Non-negative Matrix Factorization (NMF) is then utilized to map the time- and compositional-dependent optoelectronic properties. Through the utilization of this workflow for each library, we demonstrate that the selection of antisolvent is critical to the stability of metal halide perovskites in ambient conditions. We explore possible dynamical processes, such as halide segregation, responsible for either the stability or eventual degradation as caused by the choice of antisolvent. Overall, this high-throughput study demonstrates the vital role that antisolvents play in the synthesis of high-quality multicomponent metal halide perovskite systems.
Even though superconductivity has been studied intensively for more than a century, the vast majority of superconductivity research today is carried out in nearly the same manner as decades ago. That is, each study tends to focus on only a single material or small subset of materials, and discoveries are made more or less serendipitously. Recent increases in computing power, novel machine learning algorithms, and improved experimental capabilities offer new opportunities to revolutionize superconductor discovery. These will enable the rapid prediction of structures and properties of novel materials in an automated, high-throughput fashion and the efficient experimental testing of these predictions. Here, we review efforts to use machine learning to attain this goal.
Computational study of molecules and materials from first principles is a cornerstone of physics, chemistry, and materials science, but limited by the cost of accurate and precise simulations. In settings involving many simulations, machine learning can reduce these costs, often by orders of magnitude, by interpolating between reference simulations. This requires representations that describe any molecule or material and support interpolation. We comprehensively review and discuss current representations and relations between them, using a unified mathematical framework based on many-body functions, group averaging, and tensor products. For selected state-of-the-art representations, we compare energy predictions for organic molecules, binary alloys, and Al-Ga-In sesquioxides in numerical experiments controlled for data distribution, regression method, and hyper-parameter optimization.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا