No Arabic abstract
Efficient synthesis of arbitrary quantum states and unitaries from a universal fault-tolerant gate-set e.g. Clifford+T is a key subroutine in quantum computation. As large quantum algorithms feature many qubits that encode coherent quantum information but remain idle for parts of the computation, these should be used if it minimizes overall gate counts, especially that of the expensive T-gates. We present a quantum algorithm for preparing any dimension-$N$ pure quantum state specified by a list of $N$ classical numbers, that realizes a trade-off between space and T-gates. Our scheme uses $mathcal{O}(log{(N/epsilon)})$ clean qubits and a tunable number of $sim(lambdalog{(frac{log{N}}{epsilon})})$ dirty qubits, to reduce the T-gate cost to $mathcal{O}(frac{N}{lambda}+lambdalog^2{frac{N}{epsilon}})$. This trade-off is optimal up to logarithmic factors, proven through an unconditional gate counting lower bound, and is, in the best case, a quadratic improvement in T-count over prior ancillary-free approaches. We prove similar statements for unitary synthesis by reduction to state preparation.
The Quantum State Preparation problem aims to prepare an n-qubit quantum state $|psi_vrangle=sum_{k=0}^{2^n-1}v_k|krangle$ from initial state $|0rangle^{otimes n}$, for a given vector $v=(v_0,ldots,v_{2^n-1})inmathbb{C}^{2^n}$ with $|v|_2=1$. The problem is of fundamental importance in quantum algorithm design, Hamiltonian simulation and quantum machine learning, yet its circuit depth complexity remains open in the general case with ancillary qubits. In this paper, we study efficient constructions of quantum circuits for preparing a quantum state: Given $m=O(2^n/n^2)$ ancillary qubits, we construct a circuit to prepare $|psi_vrangle$ with depth $Theta(2^n/(m+n))$, which is optimal in this regime. In particular, when $m=Theta(2^n/n^2)$, the circuit depth is $Theta(n^2)$, which is an exponential improvement of the previous bound of $O(2^n)$. For $m=omega(2^n/n^2)$, we prove a lower bound of $Omega(n)$, an exponential improvement over the previous lower bound of $Omega(log n)$, leaving a polynomial gap between $Omega(n)$ and $O(n^2)$ for the depth complexity. These results also imply a tight bound of $Theta(4^n/(m+n))$ for depth of circuits implementing a general n-qubit unitary using $m=O(2^n/n)$ ancillary qubits. This closes a gap for circuits without ancillary qubits; for circuits with sufficiently many ancillary qubits, this gives a quadratic saving from $O(4^n)$ to $tildeTheta(2^n)$.Our circuits are deterministic, prepare the state and carry out the unitary precisely, utilize the ancillary qubits tightly and the depths are optimal in a wide range of parameter regime. The results can be viewed as (optimal) time-space tradeoff bounds, which is not only theoretically interesting, but also practically relevant in the current trend that the number of qubits starts to take off, by showing a way to use a large number of qubits to compensate the short qubit lifetime.
We reduce the extra qubits needed for two fault-tolerant quantum computing protocols: error correction, specifically syndrome bit measurement, and cat state preparation. For distance-three fault-tolerant syndrome extraction, we show an exponential reduction in qubit overhead over the previous best protocol. For a weight-$w$ stabilizer, we demonstrate that stabilizer measurement tolerating one fault needs at most $lceil log_2 w rceil + 1$ ancilla qubits. If qubits reset quickly, four ancillas suffice. We also study the preparation of entangled cat states, and prove that the overhead for distance-three fault tolerance is logarithmic in the cat state size. These results apply both to near-term experiments with a few qubits, and to the general study of the asymptotic resource requirements of syndrome measurement and state preparation. With $a$ flag qubits, previous methods use $O(a)$ flag patterns to identify faults. In order to use the same flag qubits more efficiently, we show how to use nearly all $2^a$ possible flag patterns, by constructing maximal-length paths through the $a$-dimensional hypercube.
Entanglement generation in trapped-ion systems has relied thus far on two distinct but related geometric phase gate techniques: Molmer-Sorensen and light-shift gates. We recently proposed a variant of the light-shift scheme where the qubit levels are separated by an optical frequency [B. C. Sawyer and K. R. Brown, Phys. Rev. A 103, 022427 (2021)]. Here we report an experimental demonstration of this entangling gate using a pair of $^{40}$Ca$^+$ ions in a cryogenic surface-electrode ion trap and a commercial, high-power, 532 nm Nd:YAG laser. Generating a Bell state in 35 $mu$s, we directly measure an infidelity of $6(3) times 10^{-4}$ without subtraction of experimental errors. The 532 nm gate laser wavelength suppresses intrinsic photon scattering error to $sim 1 times 10^{-5}$. This result establishes our scheme as competitive with previously demonstrated entangling gates.
We study a method of producing approximately diagonal 1-qubit gates. For each positive integer, the method provides a sequence of gates that are defined iteratively from a fixed diagonal gate and an arbitrary gate. These sequences are conjectured to converge to diagonal gates doubly exponentially fast and are verified for small integers. We systemically study this conjecture and prove several important partial results. Some techniques are developed to pave the way for a final resolution of the conjecture. The sequences provided here have applications in quantum search algorithms, quantum circuit compilation, generation of leakage-free entangled gates in topological quantum computing, etc.
We demonstrate diabatic two-qubit gates with Pauli error rates down to $4.3(2)cdot 10^{-3}$ in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizing the entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.