Let $M^n$ be a closed immersed hypersurface lying in a contractible ball $B(p,R)$ of the ambient $(n+1)$-manifold $N^{n+1}$. We prove that, by pinching Heintze-Reillys inequality via sectional curvature upper bound of $B(p,R)$, 1st eigenvalue and mean curvature of $M$, not only $M$ is Hausdorff close to a geodesic sphere $S(p_0,R_0)$ in $N$, but also the ``enclosed ball $B(p_0,R_0)$ is close to be of constant curvature, provided with a uniform control on the volume and mean curvature of $M$. We raise a conjecture for $M$ to be a diffeomorphic sphere, and give some positive partial answer.
We establish a pointwise estimate of A along the mean curvature flow in terms of the initial geometry and the jHAj bound. As corollaries we obtain the extension theorem of HA and the blowup rate estimate of HA.
For Riemannian manifolds with a smooth measure $(M, g, e^{-f}dv_{g})$, we prove a generalized Myers compactness theorem when Bakry--Emery Ricci tensor is bounded from below and $f$ is bounded.