Do you want to publish a course? Click here

The Origin of Interstellar Turbulence in M33

60   0   0.0 ( 0 )
 Added by Dyas Utomo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We utilize the multi-wavelength data of M33 to study the origin of turbulence in its interstellar medium. We find that the HI turbulent energy surface density inside 8 kpc is $sim1-3~times~10^{46}$ erg pc$^{-2}$, and has no strong dependence on galactocentric radius because of the lack of variation in HI surface density and HI velocity dispersion. Then, we consider the energies injected by supernovae (SNe), the magneto-rotational instability (MRI), and the gravity-driven turbulence from accreted materials as the sources of turbulent energy. For a constant dissipation time of turbulence, the SNe energy can maintain turbulence inside $sim 4$ kpc radius (equivalent to $sim 0.5~R_{25}$), while the MRI energy is always smaller than the turbulent energy within 8 kpc radius. However, when we let the dissipation time to be equal to the crossing time of turbulence across the HI scale-height, the SNe energy is enough to maintain turbulence out to 7 kpc radius, and the sum of SNe and MRI energies is able to maintain turbulence out to 8 kpc radius. Due to lack of constraint in the mass accretion rate through the disk of M33, we can not rule out the accretion driven turbulence as a possible source of energy. Furthermore, by resolving individual Giant Molecular Clouds in M33, we also show that the SNe energy can maintain turbulence within individual molecular clouds with $sim 1%$ of coupling efficiency. This result strengthens the proposition that stellar feedback is an important source of energy to maintain turbulence in nearby galaxies.



rate research

Read More

162 - Keith T. Smith 2013
We present the first sample of diffuse interstellar bands (DIBs) in the nearby galaxy M33. Studying DIBs in other galaxies allows the behaviour of the carriers to be examined under interstellar conditions which can be quite different from those of the Milky Way, and to determine which DIB properties can be used as reliable probes of extragalactic interstellar media. Multi-object spectroscopy of 43 stars in M33 has been performed using Keck/DEIMOS. The stellar spectral types were determined and combined with literature photometry to determine the M33 reddenings E(B-V)_M33. Equivalent widths or upper limits have been measured for the {lambda}5780 DIB towards each star. DIBs were detected towards 20 stars, demonstrating that their carriers are abundant in M33. The relationship with reddening is found to be at the upper end of the range observed in the Milky Way. The line of sight towards one star has an unusually strong ratio of DIB equivalent width to E(B-V)_M33, and a total of seven DIBs were detected towards this star.
Turbulence is ubiquitous in the insterstellar medium and plays a major role in several processes such as the formation of dense structures and stars, the stability of molecular clouds, the amplification of magnetic fields, and the re-acceleration and diffusion of cosmic rays. Despite its importance, interstellar turbulence, alike turbulence in general, is far from being fully understood. In this review we present the basics of turbulence physics, focusing on the statistics of its structure and energy cascade. We explore the physics of compressible and incompressible turbulent flows, as well as magnetized cases. The most relevant observational techniques that provide quantitative insights of interstellar turbulence are also presented. We also discuss the main difficulties in developing a three-dimensional view of interstellar turbulence from these observations. Finally, we briefly present what could be the the main sources of turbulence in the interstellar medium.
I discuss the role of self-gravity and radiative heating and cooling in shaping the nature of the turbulence in the interstellar medium (ISM) of our galaxy. The heating and cooling cause it to be highly compressible, and, in some regimes of density and temperature, to become thermally unstable, tending to spontaneously segregate into warm/diffuse and cold/dense phases. On the other hand, turbulence is an inherently mixing process, tending to replenish the density and temperature ranges that would be forbidden under thermal processes alone. The turbulence in the ionized ISM appears to be transonic (i.e, with Mach numbers $Ms sim 1$), and thus to behave essentially incompressibly. However, in the neutral medium, thermal instability causes the sound speed of the gas to fluctuate by up to factors of $sim 30$, and thus the flow can be highly supersonic with respect to the dense/cold gas, although numerical simulations suggest that this behavior corresponds more to the ensemble of cold clumps than to the clumps internal velocity dispersion. Finally, coherent large-scale compressions in the warm neutral medium (induced by, say, the passage of spiral arms or by supernova shock waves) can produce large, dense molecular clouds that are subject to their own self-gravity, and begin to contract gravitationally. Because they are populated by nonlinear density fluctuations, whose local free-fall times are significantly smaller than that of the whole cloud, the fluctuations terminate their collapse earlier, giving rise to a regime of hierarchical gravitational fragmentation, with small-scale collapses occurring within larger-scale ones. Thus, the turbulence in molecular clouds may be dominated by a gravitationally contracting component at all scales.
In order to investigate the origin of the interstellar turbulence, detailed observations in the CO J=1--0 and 3--2 lines have been carried out in an interacting region of a molecular cloud with an HII region. As a result, several 1,000 to 10,000 AU scale cloudlets with small velocity dispersion are detected, whose systemic velocities have a relatively large scatter of a few km/s. It is suggested that the cloud is composed of small-scale dense and cold structures and their overlapping effect makes it appear to be a turbulent entity as a whole. This picture strongly supports the two-phase model of turbulent medium driven by thermal instability proposed previously. On the surface of the present cloud, the turbulence is likely to be driven by thermal instability following ionization shock compression and UV irradiation. Those small scale structures with line width of ~ 0.6 km/s have a relatively high CO line ratio of J=3--2 to 1--0, 1 < R(3-2/1-0) < 2. The large velocity gradient analysis implies that the 0.6 km/s width component cloudlets have an average density of 10^{3-4} cm^{-3}, which is relatively high at cloud edges, but their masses are only < 0.05 M_{sun}.
145 - Siyao Xu 2019
Velocity statistics is a direct probe of the dynamics of interstellar turbulence. Its observational measurements are very challenging due to the convolution between density and velocity and projection effects. We introduce the projected velocity structure function, which can be generally applied to statistical studies of both sub- and super-sonic turbulence in different interstellar phases. It recovers the turbulent velocity spectrum from the projected velocity field in different regimes, and when the thickness of a cloud is less than the driving scale of turbulence, it can also be used to determine the cloud thickness and the turbulence driving scale. By applying it to the existing core velocity dispersion measurements of the Taurus cloud, we find a transition from the Kolmogorov to the Burgers scaling of turbulent velocities with decreasing length scales, corresponding to the large-scale solenoidal motions and small-scale compressive motions, respectively. The latter occupy a small fraction of the volume and can be selectively sampled by clusters of cores with the typical cluster size indicated by the transition scale.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا