Do you want to publish a course? Click here

Gas phase detection and rotational spectroscopy of ethynethiol, HCCSH

98   0   0.0 ( 0 )
 Added by Kin Long Kelvin Lee
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the gas-phase detection and spectroscopic characterization of ethynethiol ($mathrm{HCCSH}$), a metastable isomer of thioketene ($mathrm{H_2C_2S}$) using a combination of Fourier-transform microwave and submillimeter-wave spectroscopies. Several $a$-type transitions of the normal species were initially detected below 40 GHz using a supersonic expansion-electrical discharge source, and subsequent measurement of higher-frequency, $b$-type lines using double resonance provided accurate predictions in the submillimeter region. With these, searches using a millimeter-wave absorption spectrometer equipped with a radio frequency discharge source were conducted in the range 280 - 660 GHz, ultimately yielding nearly 100 transitions up to $^rR_0(36)$ and $^rQ_0(68)$. From the combined data set, all three rotational constants and centrifugal distortion terms up to the sextic order were determined to high accuracy, providing a reliable set of frequency predictions to the lower end of the THz band. Isotopic substitution has enabled both a determination of the molecular structure of $mathrm{HCCSH}$ and, by inference, its formation pathway in our nozzle discharge source via the bimolecular radical-radical recombination reaction $mathrm{SH + C_2H}$, which is calculated to be highly exothermic (-477 kJ/mol) using the HEAT345(Q) thermochemical scheme.



rate research

Read More

N-methylformamide, CH3NHCHO, may be an important molecule for interstellar pre-biotic chemistry because it contains a peptide bond. The rotational spectrum of the most stable trans conformer of CH3NHCHO is complicated by strong torsion-rotation interaction due to the low barrier of the methyl torsion. We use two absorption spectrometers in Kharkiv and Lille to measure the rotational spectra over 45--630 GHz. The analysis is carried out using the Rho-axis method and the RAM36 code. We search for N-methylformamide toward the hot molecular core Sgr B2(N2) using a spectral line survey carried out with ALMA. The astronomical results are put into a broader astrochemical context with the help of a gas-grain chemical kinetics model. The laboratory data set for the trans conformer of CH3NHCHO consists of 9469 line frequencies with J <= 62, including the first assignment of the rotational spectra of the first and second excited torsional states. All these lines are fitted within experimental accuracy. We report the tentative detection of CH3NHCHO towards Sgr B2(N2). We find CH3NHCHO to be more than one order of magnitude less abundant than NH2CHO, a factor of two less abundant than CH3NCO, but only slightly less abundant than CH3CONH2. The chemical models indicate that the efficient formation of HNCO via NH + CO on grains is a necessary step in the achievement of the observed gas-phase abundance of CH3NCO. Production of CH3NHCHO may plausibly occur on grains either through the direct addition of functional-group radicals or through the hydrogenation of CH3NCO. Provided the detection of CH3NHCHO is confirmed, the only slight underabundance of this molecule compared to its more stable structural isomer acetamide and the sensitivity of the model abundances to the chemical kinetics parameters suggest that the formation of these two molecules is controlled by kinetics rather than thermal equilibrium.
The dissociative recombination of the lowest rotational states of H3+ has been investigated at the storage ring TSR using a cryogenic 22-pole radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15 K to the lowest rotational levels, (J,G)=(1,0) and (1,1), which belong to the ortho and para proton-spin symmetry, respectively. The rate coefficients and dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2 were measured and compared to the rate and dynamics of a hot H3+ beam from a Penning source. The production of cold H3+ rotational populations was separately studied by rovibrational laser spectroscopy using chemical probing with argon around 55 K. First results indicate a ~20% relative increase of the para contribution when using para-H2 as parent gas. The H3+ rate coefficient observed for the para-H2 source gas, however, is quite similar to the H3+ rate for the normal-H2 source gas. The recombination dynamics confirm that for both source gases, only small populations of rotationally excited levels are present. The distribution of 3-body fragmentation geometries displays a broad part of various triangular shapes with an enhancement of ~12% for events with symmetric near-linear configurations. No large dependences on internal state or collision energy are found.
Ultrafast two-dimensional spectroscopy utilizes correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum. Its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. Here we report ultrafast two-dimensional terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by three terahertz field-dipole interactions. The nonlinear time-domain orientation signals are mapped into the frequency domain in two-dimensional rotational spectra which reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
A long standing problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laboratory data, we report searches for the rotational lines in the microwave, millimeter, and sub-millimeter regions of the sulfur-containing hydrocarbon HCCSH. This simple species would appear to be a promising candidate for detection in space owing to the large dipole moment along its $b$-inertial axis, and because the bimolecular reaction between two highly abundant astronomical fragments (CCH and SH radicals) may be rapid. An inspection of multiple line surveys from the centimeter to the far-infrared toward a range of sources from dark clouds to high-mass star-forming regions, however, resulted in non-detections. An analogous search for the lowest-energy isomer, H$_2$CCS, is presented for comparison, and also resulted in non-detections. Typical upper limits on the abundance of both species relative to hydrogen are $10^{-9}$-$10^{-10}$. We thus conclude that neither isomer is a major reservoir of interstellar sulfur in the range of environments studied. Both species may still be viable candidates for detection in other environments or at higher frequencies, providing laboratory frequencies are available.
The evidence for benzonitrile (C$_6$H$_5$CN}) in the starless cloud core TMC-1 makes high-resolution studies of other aromatic nitriles and their ring-chain derivatives especially timely. One such species is phenylpropiolonitrile (3-phenyl-2-propynenitrile, C$_6$H$_5$C$_3$N), whose spectroscopic characterization is reported here for the first time. The low resolution (0.5 cm$^{-1}$) vibrational spectrum of C$_6$H$_5$C$_3$N} has been recorded at far- and mid-infrared wavelengths (50 - 3500 cm$^{-1}$) using a Fourier Transform interferometer, allowing for the assignment of band centers of 14 fundamental vibrational bands. The pure rotational spectrum of the species has been investigated using a chirped-pulse Fourier transform microwave (FTMW) spectrometer (6 - 18 GHz), a cavity enhanced FTMW instrument (6 - 20 GHz), and a millimeter-wave one (75 - 100 GHz, 140 - 214 GHz). Through the assignment of more than 6200 lines, accurate ground state spectroscopic constants (rotational, centrifugal distortion up to octics, and nuclear quadrupole hyperfine constants) have been derived from our measurements, with a plausible prediction of the weaker bands through calculations. Interstellar searches for this highly polar species can now be undertaken with confidence since the astronomically most interesting radio lines have either been measured or can be calculated to very high accuracy below 300 GHz.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا