No Arabic abstract
A long standing problem in astrochemistry is the inability of many current models to account for missing sulfur content. Many relatively simple species that may be good candidates to sequester sulfur have not been measured experimentally at the high spectral resolution necessary to enable radioastronomical identification. On the basis of new laboratory data, we report searches for the rotational lines in the microwave, millimeter, and sub-millimeter regions of the sulfur-containing hydrocarbon HCCSH. This simple species would appear to be a promising candidate for detection in space owing to the large dipole moment along its $b$-inertial axis, and because the bimolecular reaction between two highly abundant astronomical fragments (CCH and SH radicals) may be rapid. An inspection of multiple line surveys from the centimeter to the far-infrared toward a range of sources from dark clouds to high-mass star-forming regions, however, resulted in non-detections. An analogous search for the lowest-energy isomer, H$_2$CCS, is presented for comparison, and also resulted in non-detections. Typical upper limits on the abundance of both species relative to hydrogen are $10^{-9}$-$10^{-10}$. We thus conclude that neither isomer is a major reservoir of interstellar sulfur in the range of environments studied. Both species may still be viable candidates for detection in other environments or at higher frequencies, providing laboratory frequencies are available.
We present a model in which the 22 GHz H$_2$O masers observed in star-forming regions occur behind shocks propagating in dense regions (preshock density $n_0 sim 10^6 - 10^8$ cm$^{-3}$). We focus on high-velocity ($v_s > 30$ km s$^{-1}$) dissociative J shocks in which the heat of H$_2$ re-formation maintains a large column of $sim 300-400$ K gas; at these temperatures the chemistry drives a considerable fraction of the oxygen not in CO to form H$_2$O. The H$_2$O column densities, the hydrogen densities, and the warm temperatures produced by these shocks are sufficiently high to enable powerful maser action. The observed brightness temperatures (generally $sim 10^{11} - 10^{14}$ K) are the result of coherent velocity regions that have dimensions in the shock plane that are 10 to 100 times the shock thickness of $sim 10^{13}$ cm. The masers are therefore beamed towards the observer, who typically views the shock edge-on, or perpendicular to the shock velocity; the brightest masers are then observed with the lowest line of sight velocities with respect to the ambient gas. We present numerical and analytic studies of the dependence of the maser inversion, the resultant brightness temperature, the maser spot size and shape, the isotropic luminosity, and the maser region magnetic field on the shock parameters and the coherence path length; the overall result is that in galactic H$_2$O 22 GHz masers these observed parameters can be produced in J shocks with $n_0sim 10^6 - 10^8$ cm$^{-3}$ and $v_s sim 30 -200$ km s$^{-1}$. A number of key observables such as maser shape, brightness temperature, and global isotropic luminosity depend only on the particle flux into the shock, $j=n_0v_s$, rather than on $n_0$ and $v_s$ separately.
The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long-suspected to be carriers of the ubiquitous unidentified infrared emission bands remain unclear. To investigate whether the formation of mono- and poly-cyclic molecules observed in cold cores could form via the bottom-up reaction of ubiquitous carbon-chain species with, e.g. atomic hydrogen, a search is made for possible intermediates in data taken as part of the GOTHAM (GBT Observations of TMC-1 Hunting for Aromatic Molecules) project. Markov-Chain Monte Carlo (MCMC) Source Models were run to obtain column densities and excitation temperatures. Astrochemical models were run to examine possible formation routes, including a novel grain-surface pathway involving the hydrogenation of C$_6$N and HC$_6$N, as well as purely gas-phase reactions between C$_3$N and both propyne (CH$_3$CCH) and allene (CH$_2$CCH$_2$), as well as via the reaction CN + H$_2$CCCHCCH. We report the first detection of cyanoacetyleneallene (H$_2$CCCHC$_3$N) in space toward the TMC-1 cold cloud using the Robert C. Byrd 100 m Green Bank Telescope (GBT). Cyanoacetyleneallene may represent an intermediate between less-saturated carbon-chains, such as the cyanopolyynes, that are characteristic of cold cores and the more recently-discovered cyclic species like cyanocyclopentadiene. Results from our models show that the gas-phase allene-based formation route in particular produces abundances of H$_2$CCCHC$_3$N that match the column density of $2times10^{11}$ cm$^{-2}$ obtained from the MCMC Source Model, and that the grain-surface route yields large abundances on ices that could potentially be important as precursors for cyclic molecules.
We report the first detection of chloronium, H$_2$Cl$^+$, in the interstellar medium, using the HIFI instrument aboard the emph{Herschel} Space Observatory. The $2_{12}-1_{01}$ lines of ortho-H$_2^{35}$Cl$^+$ and ortho-H$_2^{37}$Cl$^+$ are detected in absorption towards NGC~6334I, and the $1_{11}-0_{00}$ transition of para-H$_2^{35}$Cl$^+$ is detected in absorption towards NGC~6334I and Sgr~B2(S). The H$_2$Cl$^+$ column densities are compared to those of the chemically-related species HCl. The derived HCl/H$_2$Cl$^+$ column density ratios, $sim$1--10, are within the range predicted by models of diffuse and dense Photon Dominated Regions (PDRs). However, the observed H$_2$Cl$^+$ column densities, in excess of $10^{13}$~cm$^{-2}$, are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models.
The rate constants for the formation, destruction, and collisional excitation of SH$^+$ are calculated from quantum mechanical approaches using two new SH$_2^+$ potential energy surfaces (PESs) of $^4A$ and $^2A$ electronic symmetry. The PESs were developed to describe all adiabatic states correlating to the SH$^+$ ($^3Sigma^-$) + H($^2S$) channel. The formation of SH$^+$ through the S$^+$ + H$_2$ reaction is endothermic by $approx$ 9860 K, and requires at least two vibrational quanta on the H$_2$ molecule to yield significant reactivity. Quasi-classical calculations of the total formation rate constant for H$_2$($v=2$) are in very good agreement with the quantum results above 100K. Further quasi-classical calculations are then performed for $v=3$, 4, and 5 to cover all vibrationally excited H$_2$ levels significantly populated in dense photodissociation regions (PDR). The new calculated formation and destruction rate constants are two to six times larger than the previous ones and have been introduced in the Meudon PDR code to simulate the physical and illuminating conditions in the Orion bar prototypical PDR. New astrochemical models based on the new molecular data produce four times larger SH$^+$ column densities, in agreement with those inferred from recent ALMA observations of the Orion bar.
It is a fact that interstellar formation processes are thermodynamically affected. Based on this, the seven heterocycles; imidazole, pyridine, pyrimidine, pyrrole, quinoline, isoquinoline and furan that have been searched for from different astronomical sources with only upper limits of their column density determined without any successful detection remain the best candidates for astronomical observation with respect to their isomers. These molecules are believed to be formed on the surface of the interstellar dust grains and as such, they are susceptible to interstellar hydrogen bonding. In this study, a two way approach using ab initio quantum chemical simulations is considered in optimizing the searches for these molecules in interstellar medium. Firstly, these molecules and their isomers are subjected to the effect of interstellar hydrogen bonding. Secondly, the deuterated analogues of these heterocycles are examined for their possible detectability. From the results, all the heterocycles except furan are found to be strongly bonded to the surfaces of the interstellar dust grains thereby reducing their abundances, thus contributing to their unsuccessful detection. Successful detection of furan remains highly feasible. With respect to their D-analogues, the computed Boltzmann factor indicates that they are formed under the dense molecular cloud conditions where major deuterium fractionation dominates implying very high D/H ratio above the cosmic D/H ratio which suggests the detectability of these deuterated species.