Do you want to publish a course? Click here

Holographic Complexity for Defects Distinguishes Action from Volume

102   0   0.0 ( 0 )
 Added by Shira Chapman Ms.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the two holographic complexity proposals for the case of a 2d boundary CFT with a conformal defect. We focus on a Randall-Sundrum type model of a thin AdS$_2$ brane embedded in AdS$_3$. We find that, using the complexity=volume proposal, the presence of the defect generates a logarithmic divergence in the complexity of the full boundary state with a coefficient which is related to the central charge and to the boundary entropy. For the complexity=action proposal we find that the complexity is not influenced by the presence of the defect. This is the first case in which the results of the two holographic proposals differ so dramatically. We consider also the complexity of the reduced density matrix for subregions enclosing the defect. We explore two bosonic field theory models which include two defects on opposite sides of a periodic domain. We point out that for a compact boson, current free field theory definitions of the complexity would have to be generalized to account for the effect of zero-modes.



rate research

Read More

We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy that controls the complexity of formation of large black holes in both the Complexity Equals Action and Complexity Equals Volume proposals in general. Our proposal reduces to known results involving the entropy in settings where the thermodynamic volume and entropy are not independent, but has broader scope. Assuming a conjectured inequality is obeyed by the thermodynamic volume, we establish that the complexity of formation is bounded from below by the entropy for large black holes.
In this paper, we will analyze the connection between the fidelity susceptibility, the holographic complexity and the thermodynamic volume. We will regularize the fidelity susceptibility and the holographic complexity by subtracting the contribution of the background AdS spacetime from the deformation of the AdS spacetime. It will be demonstrated that this regularized fidelity susceptibility has the same behavior as the thermodynamic volume and that the regularized complexity has a very different behavior. As the information dual to different volumes in the bulk would be measured by the fidelity susceptibility and the holographic complexity, this paper will establish a connection between thermodynamics and information dual to a volume.
We study the influence of angular momentum on quantum complexity for CFT states holographically dual to rotating black holes. Using the holographic complexity=action (CA) and complexity=volume (CV) proposals, we study the full time dependence of complexity and the complexity of formation for two dimensional states dual to rotating BTZ. The obtained results and their dependence on angular momentum turn out to be analogous to those of charged states dual to Reissner-Nordstrom AdS black holes. For CA, our computation carefully accounts for the counterterm in the gravity action, which was not included in previous analysis in the literature. This affects the complexity early time dependence and its effect becomes negligible close to extremality. In the grand canonical ensemble, the CA and CV complexity of formation are linear in the temperature, and diverge with the same structure in the speed of light angular velocity limit. For CA the inclusion of the counterterm is crucial for both effects. We also address the problem of studying holographic complexity for higher dimensional rotating black holes, focusing on the four dimensional Kerr-AdS case. Carefully taking into account all ingredients, we show that the late time limit of the CA growth rate saturates the expected bound, and find the CV complexity of formation of large black holes diverges in the critical angular velocity limit. Our holographic analysis is complemented by the study of circuit complexity in a two dimensional free scalar model for a thermofield double (TFD) state with angular momentum. We show how this can be given a description in terms of non-rotating TFD states introducing mode-by-mode effective temperatures and times. We comment on the similarities and differences of the holographic and QFT complexity results.
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering holographic purifications of a holographic mixed state. We argue that these include states with any amount of coarse-graining consistent with being a purification of the mixed state in question, corresponding holographically to different choices of the cutoff surface. We find that within the complexity = volume and complexity = spacetime volume conjectures, the subregion complexity is equal to the holographic purification complexity. For complexity = action, the subregion complexity seems to provide an upper bound on the holographic purification complexity, though we show cases where this bound is not saturated. One such example is provided by black holes with a large genus behind the horizon, which were studied by Fu et al. As such, one must conclude that these offending geometries are not holographic, that CA must be modified, or else that holographic subregion complexity in CA is not dual to the purification complexity of the corresponding reduced state.
We study the Complexity=Volume conjecture for Warped AdS$_3$ black holes. We compute the spatial volume of the Einstein-Rosen bridge and we find that its growth rate is proportional to the Hawking temperature times the Bekenstein-Hawking entropy. This is consistent with expectations about computational complexity in the boundary theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا