Do you want to publish a course? Click here

Density Changes in Low Pressure Gas Targets for Electron Scattering Experiments

78   0   0.0 ( 0 )
 Added by Douglas Higinbotham
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A system of modular sealed gas target cells has been developed for use in electron scattering experiments at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). This system was initially developed to complete the MARATHON experiment which required, among other species, tritium as a target material. Thus far, the cells have been loaded with the gas species 3H, 3He, 2H, 1H and 40Ar and operated in nominal beam currents of up to 22.5 uA in Jefferson Labs Hall A. While the gas density of the cells at the time of loading is known, the density of each gas varies uniquely when heated by the electron beam. To extract experimental cross sections using these cells, density dependence on beam current of each target fluid must be determined. In this study, data from measurements with several beam currents within the range of 2.5 to 22.5 uA on each target fluid are presented. Additionally, expressions for the beam current dependent fluid density of each target are developed.



rate research

Read More

We present the conceptual design of a polarized $^3$He target to be used for high luminosity scattering experiments within high magnetic field environments. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell within a uniform magnetic field above 1 T. By transferring the polarized gas to cryogenic target cell, the gas density is increased to create a target thickness suitable for high luminosity applications. We discuss the general design of this scheme, and plans for its application in Jefferson Labs CLAS12 detector.
The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric M{o} ller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single M{o} ller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a M{o} ller/Bhabha interaction and a concurrent elastic $ep$ interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.
Thin uniform arsenic targets suitable for high-fidelity cross section measurements in stacked-target experiments were prepared by electrodeposition of arsenic on titanium backings from aqueous solutions. Electrolytic cells were constructed and capable of arsenic deposits ranging in mass from approximately 1 to 29 mg (0.32-7.22 mg/cm$^2$, 0.57-12.62 $mu$m). Examination of electrodeposit surface morphology by scanning electron microscopy and microanalysis was performed to investigate the uniformity of produced targets. Brief studies of plating growth dynamics and structural properties through cyclic voltammetry were also undertaken. An alternative target fabrication approach by vapor deposition was additionally conducted. We further introduce a non-destructive characterization method for thin targets by neutron activation, which is independent of neutron flux shape, environmental factors, and source geometry, while correcting for any potential scatter or absorption effects.
We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all $E/P$, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low $E/P$ in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger $E/P$. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
The general properties needed in targets (sources) for high precision, high accuracy measurements are reviewed. The application of these principles to the problem of developing targets for the Fission TPC is described. Longer term issues, such as the availability of actinide materials, improved knowledge of energy losses and straggling and the stability of targets during irradiation are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا