Do you want to publish a course? Click here

A novel technique for determining luminosity in electron-scattering/positron-scattering experiments from multi-interaction events

166   0   0.0 ( 0 )
 Added by Axel Schmidt
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The OLYMPUS experiment measured the cross-section ratio of positron-proton elastic scattering relative to electron-proton elastic scattering to look for evidence of hard two-photon exchange. To make this measurement, the experiment alternated between electron beam and positron beam running modes, with the relative integrated luminosities of the two running modes providing the crucial normalization. For this reason, OLYMPUS had several redundant luminosity monitoring systems, including a pair of electromagnetic calorimeters positioned downstream from the target to detect symmetric M{o} ller and Bhabha scattering from atomic electrons in the hydrogen gas target. Though this system was designed to monitor the rate of events with single M{o} ller/Bhabha interactions, we found that a more accurate determination of relative luminosity could be made by additionally considering the rate of events with both a M{o} ller/Bhabha interaction and a concurrent elastic $ep$ interaction. This method was improved by small corrections for the variance of the current within bunches in the storage ring and for the probability of three interactions occurring within a bunch. After accounting for systematic effects, we estimate that the method is accurate in determining the relative luminosity to within 0.36%. This precise technique can be employed in future electron-proton and positron-proton scattering experiments to monitor relative luminosity between different running modes.



rate research

Read More

We have constructed and tested a novel plastic-scintillator-based solid-state active proton target for use in nuclear spectroscopic studies with nuclear reactions induced by an ion beam in inverse kinematics. The active target system, named Stack Structure Solid organic Scintillator Active Target (S4AT), consists of five layers of plastic scintillators, each with a 1-mm thickness. To determine the reaction point in the thickness direction, we exploit the difference in the energy losses due to the beam particle and the charged reaction product(s) in the scintillator material. S4AT offers the prospect of a relatively thick target while maintaining a good energy resolution. By considering the relative energy loss between different layers, the energy loss due to unreacted beam particles can be eliminated. Such procedure, made possible by the multi-layer structure, is essential to eliminate the effect of unreacted accompanying beam particles, thus enabling its operation at a moderate beam intensity of up to a few Mcps. We evaluated the performance of S4AT by measuring the elastic proton-proton scattering using a 70-MeV proton beam at Cyclotron and Radioisotope Center (CYRIC), Tohoku University.
A system of modular sealed gas target cells has been developed for use in electron scattering experiments at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). This system was initially developed to complete the MARATHON experiment which required, among other species, tritium as a target material. Thus far, the cells have been loaded with the gas species 3H, 3He, 2H, 1H and 40Ar and operated in nominal beam currents of up to 22.5 uA in Jefferson Labs Hall A. While the gas density of the cells at the time of loading is known, the density of each gas varies uniquely when heated by the electron beam. To extract experimental cross sections using these cells, density dependence on beam current of each target fluid must be determined. In this study, data from measurements with several beam currents within the range of 2.5 to 22.5 uA on each target fluid are presented. Additionally, expressions for the beam current dependent fluid density of each target are developed.
We present the conceptual design of a polarized $^3$He target to be used for high luminosity scattering experiments within high magnetic field environments. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell within a uniform magnetic field above 1 T. By transferring the polarized gas to cryogenic target cell, the gas density is increased to create a target thickness suitable for high luminosity applications. We discuss the general design of this scheme, and plans for its application in Jefferson Labs CLAS12 detector.
We present a novel technique, called DSVP (Discrimination through Singular Vectors Projections), to discriminate spurious events within a dataset. The purpose of this paper is to lay down a general procedure which can be tailored for a broad variety of applications. After describing the general concept, we apply the algorithm to the problem of identifying nearly coincident events in low temperature microcalorimeters in order to push the time resolution close to its intrinsic limit. In fact, from simulated datasets it was possible to achieve an effective time resolution even shorter than the sampling time of the system considered. The obtained results are contextualized in the framework of the HOLMES experiment, which aims at directly measuring the neutrino mass with the calorimetric approach, allowing to significally improve its statistical sensitivity.
Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pile-up of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pile-up rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pile-up events with a programmable waveform generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pile-up events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pile-up pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pile-up events with rise time of ~15ms down to time separation between the individual events of about 2ms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا