No Arabic abstract
X-ray scattering is one of the primary tools to determine crystallographic configuration with atomic accuracy. However, the measurement of ultrafast structural dynamics in monolayer crystals remains a long-standing challenge due to a significant reduction of diffraction volume and complexity of data analysis, prohibiting the application of ultrafast x-ray scattering to study nonequilibrium structural properties at the two-dimensional limit. Here, we demonstrate femtosecond surface x-ray diffraction in combination with crystallographic model-refinement calculations to quantify the ultrafast structural dynamics of monolayer WSe$_2$ crystals supported on a substrate. We found the absorbed optical photon energy is preferably coupled to the in-plane lattice vibrations within 2 picoseconds while the out-of-plane lattice vibration amplitude remains unchanged during the first 10 picoseconds. The model-assisted fitting suggests an asymmetric intralayer spacing change upon excitation. The observed nonequilibrium anisotropic structural dynamics in two-dimensional materials agrees with first-principles nonadiabatic modeling in both real and momentum space, marking the distinct structural dynamics of monolayer crystals from their bulk counterparts. The demonstrated methods unlock the benefit of surface sensitive x-ray scattering to quantitatively measure ultrafast structural dynamics in atomically thin materials and across interfaces.
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with momentum resolution of 0.01 nm^-1 using 10 keV x-rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principle symmetry directions. The phonon dispersion was reconstructed with less than three hours of measurement time, during which neither the x-ray energy, the sample orientation, nor the detector position were scanned. These results demonstrate how time-domain measurements can complement conventional frequency domain inelastic scattering techniques.
The equations for calculating diffraction profiles for bent crystals are revisited for both meridional and sagittal bending. Two approximated methods for computing diffraction profiles are treated: multilamellar and Penning-Polder. A common treatment of crystal anisotropy is included in these models. The formulation presented is implemented into the XOP package, completing and updating the crystal module that simulates diffraction profiles for perfect, mosaic and now distorted crystals by elastic bending.
Resonance anomalous surface x-ray scattering (RASXS) technique was applied to electrochemical interface studies. It was used to determine the chemical states of electrochemically formed anodic oxide monolayers on platinum surface. It is shown that RASXS exhibits strong polarization dependence when the surface is significantly modified. The polarization dependence is demonstrated for three examples; anodic oxide formation, sulfate adsorption, and CO adsorption on platinum surfaces. s- and p- polarization RASXS data were simulated with the latest version of ab initio multiple scattering calculations (FEFF8.2). Elementary theoretical considerations are also presented for the origin of the polarization dependence in RASXS.
Magnetic skyrmions are topologically-protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100 nm-size magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliably tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic applications in the future.
Detailed information on the electronic states of both V and Mn 3d electrons in the ferrimagnet Mn2VAl is obtained by the bulk sensitive resonant inelastic soft x-ray scattering (SX-RIXS) excited with the circularly polarized light under an external magnetic field for the first time. The results under the V L-edge excitation have revealed the negligible partial density of states (PDOS) of the V 3d states around the Fermi energy as well as their rather localized character. Under the Mn L-edge excitation, on the other hand, the spectra are dominated by fluorescence with clear magnetic circular dichroism with noticeable excitation photon energy dependence. Compared with the theoretical prediction of the RIXS spectra based on the density-functional-theory band structure calculation, an itinerant, spin-dependent character of the Mn 3d states and decays of the Mn 2p core states are confirmed in consistence with the half-metallicity of the Mn 3d states.