No Arabic abstract
In this study, we present a generalized spherically symmetric, anisotropic and static compact stellar model in $f(T)$ gravity, where $T$ represents the torsion scalar. By employing the Karmarkar condition we have obtained embedding class 1 metric from the general spherically metric of class 2 and the solutions of the Einstein field equations (EFE) has been presented with the choice of suitable parametric values of $n$ under a simplified linear form of $f(T)$ gravity reads as $f(T)=A+BT$, where $A$ and $B$ are two constants. By matching the interior spacetime metric with the exterior Schwarzschild metric at the surface and considering the values of mass and radius of the compact stars we obtain the values of the unknown constants. We have presented further a detailed analysis of the physical acceptability and examined the stability of the stellar configuration by studying the energy conditions, generalized Tolman-Oppenheimer-Volkov (TOV) equation, Herrera cracking concept, adiabatic index, etc. In the investigation, we predict numerical values of the central density, surface density, central pressure, etc., in a tabular form taking different values of $n$ specifically for $LMC~X-4$, $Cen~X-3$ and $SMC~X-1$ as the representative of compact star candidates.
We derive a new interior solution for stellar compact objects in $fmathcal{(R)}$ gravity assuming a differential relation to constrain the Ricci curvature scalar. To this aim, we consider specific forms for the radial component of the metric and the first derivative of $fmathcal{(R)}$. After, the time component of the metric potential and the form of $f(mathcal R)$ function are derived. From these results, it is possible to obtain the radial and tangential components of pressure and the density. The resulting interior solution represents a physically motivated anisotropic neutron star model. It is possible to match it with a boundary exterior solution. From this matching, the components of metric potentials can be rewritten in terms of a compactness parameter $C$ which has to be $C=2GM/Rc^2 <<0.5$ for physical consistency. Other physical conditions for real stellar objects are taken into account according to the solution. We show that the model accurately bypasses conditions like the finiteness of radial and tangential pressures, and energy density at the center of the star, the positivity of these components through the stellar structure, and the negativity of the gradients. These conditions are satisfied if the energy-conditions hold. Moreover, we study the stability of the model by showing that Tolman-Oppenheimer-Volkoff equation is at hydrostatic equilibrium. The solution is matched with observational data of millisecond pulsars with a withe dwarf companion and pulsars presenting thermonuclear bursts.
In the current article, we study anisotropic spherically symmetric strange star under the background of $f(R,T)$ gravity using the metric potentials of Tolman-Kuchowicz type~cite{Tolman1939,Kuchowicz1968} as $lambda(r)=ln(1+ar^2+br^4)$ and $ u(r)=Br^2+2ln C$ which are free from singularity, satisfy stability criteria and also well behaved. We calculate the value of constants $a$, $b$, $B$ and $C$ using matching conditions and the observed values of the masses and radii of known samples. To describe the strange quark matter (SQM) distribution, here we have used the phenomenological MIT bag model equation of state (EOS) where the density profile ($rho$) is related to the radial pressure ($p_r$) as $p_r(r)=frac{1}{3}(rho-4B_g)$. Here quark pressure is responsible for generation of bag constant $B_g$. Motivation behind this study lies in finding out a non-singular physically acceptable solution having various properties of strange stars. The model shows consistency with various energy conditions, TOV equation, Herreras cracking condition and also with Harrison-Zel$$dovich-Novikovs static stability criteria. Numerical values of EOS parameter and the adiabatic index also enhance the acceptability of our model.
In this paper, we study the stellar structure in terms of alternative theory of gravity specially by f (R;T) gravity theory. Here, we consider the function f (R;T) = R+2VT where R is the Ricci scalar, T is the stress-energy momentum and V is the coupling constant. Using it we developed a stellar model that briefly explains the isotropic matter distribution within the compact object filled with perfect fluid. The stability of the model is shown by several physical and stability conditions. With the accecptibility of our theory, we were able to collect data for compact stars like PSR-B0943+10, CEN X-3, SMC X-4, Her X-1 and 4U1538-52 with great accuracy.
In this article we study the hydrostatic equilibrium configuration of neutron stars (NSs) and strange stars (SSs), whose fluid pressure is computed from the equations of state $p=omegarho^{5/3}$ and $p=0.28(rho-4{cal B})$, respectively, with $omega$ and ${cal B}$ being constants and $rho$ the energy density of the fluid. We also study white dwarfs (WDs) equilibrium configurations. We start by deriving the hydrostatic equilibrium equation for the $f(R,T)$ theory of gravity, with $R$ and $T$ standing for the Ricci scalar and trace of the energy-momentum tensor, respectively. Such an equation is a generalization of the one obtained from general relativity, and the latter can be retrieved for a certain limit of the theory. For the $f(R,T)=R+2lambda T$ functional form, with $lambda$ being a constant, we find that some physical properties of the stars, such as pressure, energy density, mass and radius, are affected when $lambda$ is changed. We show that for some particular values of the constant $lambda$, some observed objects that are not predicted by General Relativity theory of gravity can be attained. Moreover, since gravitational fields are smaller for WDs than for NSs or SSs, the scale parameter $lambda$ used for WDs is small when compared to the values used for NSs and SSs.
In this article we try to present spherically symmetric isotropic strange star model under the framework of $f(R,mathcal{T})$ theory of gravity. To this end, we consider that the Lagrangian density is an arbitrary linear function of the Ricci scalar $R$ and the trace of the energy momentum tensor~$mathcal{T}$ given as $fleft(R,mathcal{T}right)=R+2chi T$. We also assume that the quark matter distribution is governed by the simplest form of the MIT bag model equation of state (EOS) as $p=frac{1}{3}left(rho-4Bright)$, where $B$ is the bag constant. We have obtained an exact solution of the modified form of the the Tolman-Oppenheimer-Volkoff (TOV) equation in the framework of $f(R,mathcal{T})$ gravity theory and studied the dependence of different physical properties, viz., total mass, radius, energy density and pressure on the chosen values of $chi$. Further, to examine physical acceptability of the proposed stellar model in detail, we conducted different tests, viz. energy conditions, modified TOV equation, mass-radius relation, causality condition etc. We have precisely explained the effects arising due to the coupling of the matter and geometry on the compact stellar system. For a chosen value of the Bag constant we have predicted numerical values of different physical parameters in tabular format for the different strange stars. It is found that as the factor $chi$ increases the strange stars shrink gradually and become less massive to turn into a more compact stellar system. The maximum mass point is well within the observational limits and hence our proposed model is suitable to explain the ultra dense compact stars. For $chi=0$ we retrieve as usual the standard results of general relativity (GR).