Do you want to publish a course? Click here

Validity of Landauer principle and quantum memory effects via collision models

116   0   0.0 ( 0 )
 Added by Zhong-Xiao Man
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the validity of Landauer principle in the non-Markovian regime by means of collision models where the intracollisions inside the reservoir cause memory effects generating system-environment correlations. We adopt the system-environment correlations created during the dynamical process to assess the effect of non-Markovianity on the Landauer principle. Exploiting an exact equality for the entropy change of the system, we find the condition for the violation of the Landauer principle, which occurs when the established system-environment correlations become larger than the entropy production of the system. We then generalize the study to the non-equilibrium situation where the system is surrounded by many reservoirs at different temperatures.Our results, verified through collision models with Heisenberg-type interactions, suggest that the complexity of the environment does not play a significant role in the qualitative mechanisms underlying the violation of the Landauer principle under non-Markovian processes.



rate research

Read More

Quantum non-Markovianity represents memory during the system dynamics, which is typically weakened by the temperature. We here study the effects of environmental temperature on the non-Markovianity of an open quantum system by virtue of collision models. The environment is simulated by a chain of ancillary qubits that are prepared in thermal states with a finite temperature $T$. Two distinct non-Markovian mechanisms are considered via two types of collision models, one where the system $S$ consecutively interacts with the ancillas and a second where $S$ collides only with an intermediate system $S$ which in turn interacts with the ancillas. We show that in both models the relation between non-Markovianity and temperature is non-monotonic. In particular, revivals of non-Markovianity may occur as temperature increases. We find that the physical reason behind this behavior can be revealed by examining a peculiar system-environment coherence exchange, leading to ancillary qubit coherence larger than system coherence which triggers information backflow from the environment to the system. These results provide insights on the mechanisms underlying the counterintuitive phenomenon of temperature-enhanced quantum memory effects.
One of the outstanding challenges to information processing is the eloquent suppression of energy consumption in execution of logic operations. Landauer principle sets an energy constraint in deletion of a classical bit of information. Although some attempts have been paid to experimentally approach the fundamental limit restricted by this principle, exploring Landauer principle in a purely quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we experimentally demonstrate a quantum version of Landauer principle, i.e., an equality associated with energy cost of information erasure in conjunction with entropy change of the associated quantized environment. Our experimental investigation substantiates an intimate link between information thermodynamics and quantum candidate systems for information processing.
Recently, a series of different measures quantifying memory effects in the quantum dynamics of open systems has been proposed. Here, we derive a mathematical representation for the non-Markovianity measure based on the exchange of information between the open system and its environment which substantially simplifies its numerical and experimental determination, and fully reveals the locality and universality of non-Markovianity in the quantum state space. We further illustrate the application of this representation by means of an all-optical experiment which allows the measurement of the degree of memory effects in a photonic quantum process with high accuracy.
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Arakis perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauers bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.
96 - Philip Taranto 2019
Understanding temporal processes and their correlations in time is of paramount importance for the development of near-term technologies that operate under realistic conditions. Capturing the complete multi-time statistics defining a stochastic process lies at the heart of any proper treatment of memory effects. In this thesis, using a novel framework for the characterisation of quantum stochastic processes, we first solve the long standing question of unambiguously describing the memory length of a quantum processes. This is achieved by constructing a quantum Markov order condition that naturally generalises its classical counterpart for the quantification of finite-length memory effects. As measurements are inherently invasive in quantum mechanics, one has no choice but to define Markov order with respect to the interrogating instruments that are used to probe the process at hand: different memory effects are exhibited depending on how one addresses the system, in contrast to the standard classical setting. We then fully characterise the structural constraints imposed on quantum processes with finite Markov order, shedding light on a variety of memory effects that can arise through various examples. Lastly, we introduce an instrument-specific notion of memory strength that allows for a meaningful quantification of the temporal correlations between the history and the future of a process for a given choice of experimental intervention. These findings are directly relevant to both characterising and exploiting memory effects that persist for a finite duration. In particular, immediate applications range from developing efficient compression and recovery schemes for the description of quantum processes with memory to designing coherent control protocols that efficiently perform information-theoretic tasks, amongst a plethora of others.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا