Do you want to publish a course? Click here

Single-atom demonstration of quantum Landauer principle

84   0   0.0 ( 0 )
 Added by Mang Feng
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the outstanding challenges to information processing is the eloquent suppression of energy consumption in execution of logic operations. Landauer principle sets an energy constraint in deletion of a classical bit of information. Although some attempts have been paid to experimentally approach the fundamental limit restricted by this principle, exploring Landauer principle in a purely quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we experimentally demonstrate a quantum version of Landauer principle, i.e., an equality associated with energy cost of information erasure in conjunction with entropy change of the associated quantized environment. Our experimental investigation substantiates an intimate link between information thermodynamics and quantum candidate systems for information processing.



rate research

Read More

We study the validity of Landauer principle in the non-Markovian regime by means of collision models where the intracollisions inside the reservoir cause memory effects generating system-environment correlations. We adopt the system-environment correlations created during the dynamical process to assess the effect of non-Markovianity on the Landauer principle. Exploiting an exact equality for the entropy change of the system, we find the condition for the violation of the Landauer principle, which occurs when the established system-environment correlations become larger than the entropy production of the system. We then generalize the study to the non-equilibrium situation where the system is surrounded by many reservoirs at different temperatures.Our results, verified through collision models with Heisenberg-type interactions, suggest that the complexity of the environment does not play a significant role in the qualitative mechanisms underlying the violation of the Landauer principle under non-Markovian processes.
To employ a quantum device, the performance of the quantum gates in the device needs to be evaluated first. Since the dimensionality of a quantum gate grows exponentially with the number of qubits, evaluating the performance of a quantum gate is a challenging task. Recently, a scheme called quantum gate verification (QGV) has been proposed, which can verifies quantum gates with near-optimal efficiency. In this work, we implement a proof-of-principle optical experiment to demonstrate this QGV scheme. We show that for a single-qubit quantum gate, only $sim400$ samples are needed to confirm the fidelity of the quantum gate to be at least $97%$ with a $99%$ confidence level using the QGV method, while at least $sim5000$ samples are needed to achieve the same result using the standard quantum process tomography method. The QGV method validated by this work has the potential to be widely used for the evaluation of quantum devices in various quantum information applications.
We present the first demonstration of a CNOT gate using neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8 murm m. We measure CNOT fidelities of F=0.73 and 0.72 using two different gate protocols, and show by measurement of parity oscillations that the gate can be used to generate two-atom states with fidelity at the threshold for entanglement. We anticipate that the long range nature of the Rydberg interaction will be attractive for future extensions of this work to multi-qubit systems.
Transforming an initial quantum state into a target state through the fastest possible route---a quantum brachistochrone---is a fundamental challenge for many technologies based on quantum mechanics. Here, we demonstrate fast coherent transport of an atomic wave packet over a distance of 15 times its size---a paradigmatic case of quantum processes where the target state cannot be reached through a local transformation. Our measurements of the transport fidelity reveal the existence of a minimum duration---a quantum speed limit---for the coherent splitting and recombination of matter waves. We obtain physical insight into this limit by relying on a geometric interpretation of quantum state dynamics. These results shed light upon a fundamental limit of quantum state dynamics and are expected to find relevant applications in quantum sensing and quantum computing.
The Landauer principle asserts that the energy cost of erasure of one bit of information by the action of a thermal reservoir in equilibrium at temperature T is never less than $kTlog 2$. We discuss Landauers principle for quantum statistical models describing a finite level quantum system S coupled to an infinitely extended thermal reservoir R. Using Arakis perturbation theory of KMS states and the Avron-Elgart adiabatic theorem we prove, under a natural ergodicity assumption on the joint system S+R, that Landauers bound saturates for adiabatically switched interactions. The recent work of Reeb and Wolf on the subject is discussed and compared.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا